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Preface

For almost forty years the Institute for Theoretical Physics of the University of
Wroc�law has organized winter schools devoted to current problems in theoretical
physics. The XXXV International Winter School on Theoretical Physics, “From
Cosmology to Quantum Gravity”, was held in Polanica, a little town in south-
west Poland, between 2nd and 11th February, 1999. The aim of the school was to
gather together world-leading scientists working on the field of quantum gravity,
along with a number of post-graduate students and young post-docs and to offer
young scientists with diverse backgrounds in astrophysics and particle physics
the opportunity to learn about recent developments in gravitational physics. The
lectures covered macroscopic phenomena like relativistic binary star systems,
gravitational waves, and black holes; and the quantum aspects, e.g., quantum
space-time and the string theory approach.
This volume contains a collection of articles based on lectures presented dur-

ing the School. They cover a wide spectrum of topics in classical relativity,
quantum gravity, black hole physics and string theory. Unfortunately, some of
the lecturers were not able to prepare their contributions, and for this reason
I decided to entitle this volume “Towards Quantum Gravity”, the title which
better reflects its contents.
I would like to thank all the lecturers for the excellent lectures they gave

and for the unique atmosphere they created during the School. Thanks are due
to Professor Jan Willem van Holten and Professor Jerzy Lukierski for their
help in organizing the School and preparing its scientific programme. Dobromila
Nowak worked very hard, carrying out virtually all administrative duties alone.
I would also like to thank the Institute for Theoretical Physics of the Univer-
sity of Wroc�law, the University of Wroc�law, the Foundation for Karpacz Winter
Schools, and the Polish Committee for Scientific Research (KBN) for their fi-
nancial support.

Wroc�law, November, 1999 Jerzy Kowalski - Glikman
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Are We at the Dawn
of Quantum-Gravity Phenomenology?

Giovanni Amelino-Camelia1

Theory Division, CERN, CH-1211, Geneva, Switzerland��

Abstract. A handful of recent papers has been devoted to proposals of experiments
capable of testing some candidate quantum-gravity phenomena. These lecture notes
emphasize those aspects that are most relevant to the questions that inevitably come
to mind when one is exposed for the first time to these research developments: How
come theory and experiments are finally meeting in spite of all the gloomy forecasts
that pervade traditional quantum-gravity reviews? Is this a case of theorists having
put forward more and more speculative ideas until a point was reached at which con-
ventional experiments could rule out the proposed phenomena? Or has there been such
a remarkable improvement in experimental techniques and ideas that we are now ca-
pable of testing plausible candidate quantum-gravity phenomena? These questions are
analysed rather carefully for the recent proposals of tests of space-time fuzziness using
modern interferometers and tests of dispersion in the quantum-gravity vacuum using
observations of gamma rays from distant astrophysical sources. I also briefly discuss
other proposed quantum-gravity experiments, including those exploiting the properties
of the neutral-kaon system for tests of quantum-gravity-induced decoherence and those
using particle-physics accelerators for tests of models with large extra dimensions.

1 Introduction

Traditionally the lack of experimental input [1] has been the most important
obstacle in the search for “quantum gravity”, the new theory that should pro-
vide a unified description of gravitation and quantum mechanics. Recently there
has been a small, but nonetheless encouraging, number of proposals [2–9] of
experiments probing the nature of the interplay between gravitation and quan-
tum mechanics. At the same time the “COW-type” experiments on quantum
mechanics in a strong (classical) gravitational environment, initiated by Colella,
Overhauser and Werner [10], have reached levels of sophistication [11] such that
even gravitationally induced quantum phases due to local tides can be detected.
In light of these developments there is now growing (although still understand-
ably cautious) hope for data-driven insight into the structure of quantum gravity.

The primary objective of these lecture notes is the one of giving the reader
an intuitive idea of how far quantum-gravity phenomenology has come. This
is somewhat tricky. Traditionally experimental tests of quantum gravity were
believed to be not better than a dream. The fact that now (some) theory and
(some) experiments finally “meet” could have two very different explanations:

�� Marie Curie Fellow (permanent address: Dipartimento di Fisica, Universitá di Roma
“La Sapienza”, Piazzale Moro 2, Roma, Italy

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 1−49, 2000.
 Springer-Verlag Berlin Heidelberg 2000



2 Giovanni Amelino-Camelia

it could be that experimental techniques and ideas have improved so much that
now tests of plausible quantum-gravity effects are within reach, but it could also
be that theorists have had enough time in their hands to come up with scenarios
speculative enough to allow testing by conventional experimental techniques.
I shall argue that experiments have indeed progressed to the point were some
significant quantum-gravity tests are doable. I shall also clarify in which sense the
traditional pessimism concerning quantum-gravity experiments was built upon
the analysis of a very limited set of experimental ideas, with the significant
omission of the possibility (which we now find to be within our capabilities) of
experiments set up in such a way that very many of the very small quantum-
gravity effects are somehow summed together. Some of the theoretical ideas that
can be tested experimentally are of course quite speculative (decoherence, space-
time foam, large extra dimensions, ...) but this is not so disappointing because
it seems reasonable to expect that the new theory should host a large number
of new conceptual/structural elements in order to be capable of reconciling the
(apparent) incompatibility between gravitation and quantum mechanics. [An
example of motivation for very new structures is discussed here in Section 10,
which is a “theory addendum” reviewing some of the arguments [12] in support of
the idea [13] that the mechanics on which quantum gravity is based might not be
exactly the one of ordinary quantum mechanics, since it should accommodate
a somewhat different (non-classical) concept of “measuring apparatus” and a
somewhat different relationship between “system” and “measuring apparatus”.]

The bulk of these notes gives brief reviews of the quantum-gravity experi-
ments that can be done. The reader will be asked to forgive the fact that this
review is not very balanced. The two proposals in which this author has been
involved [5,7] are in fact discussed in greater detail, while for the experiments
proposed in Refs. [2–4,8,9] I just give a very brief discussion with emphasis on
the most important conceptual ingredients.

The students who attended the School might be surprised to find the mate-
rial presented with a completely different strategy. While my lectures in Polanica
were sharply divided in a first part on theory and a second part on experiments,
here some of the theoretical intuition is presented while discussing the experi-
ments. It appears to me that this strategy might be better suited for a written
presentation. I also thought it might be useful to start with the conclusions,
which are given in the next two sections. Section 4 reviews the proposal of using
modern interferometers to set bounds on space-time fuzziness. In Section 5 I
review the proposal of using data on GRBs (gamma-ray bursts) to investigate
possible quantum-gravity induced in vacuo dispersion of electromagnetic radia-
tion. In Section 6 I give brief reviews of other quantum-gravity experiments. In
Section 7 I give a brief discussion of the mentioned “COW-type” experiments
testing quantum mechanics in a strong classical gravity environment. Section 8
provides a “theory addendum” on various scenarios for bounds on the measur-
ability of distances in quantum gravity and their possible relation to properties
of the space-time foam. Section 9 provides a theory addendum on other works
which are in one way or another related to (or relevant for) the content of these
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notes. Section 10 gives the mentioned theory addendum concerning ideas on a
mechanics for quantum gravity that be not exactly of the type of ordinary quan-
tum mechanics. Finally in Section 11 I give some comments on the outlook of
quantum-gravity phenomenology, and I also emphasize the fact that, whether or
not they turn out to be helpful for quantum gravity, most of the experiments con-
sidered in these notes are intrinsically significant as tests of quantum mechanics
and/or tests of fundamental symmetries.

2 First the conclusions:
what has this phenomenology achieved?

Let me start by giving an intuitive idea of how far quantum-gravity phenomenol-
ogy has gone. Some of the views expressed in this section are supported by anal-
yses which will be reviewed in the following sections. The crucial question is:
Can we just test some wildly speculative ideas which have somehow surfaced in
the quantum-gravity literature? Or can we test even some plausible candidate
quantum-gravity phenomena?

Before answering these questions it is appropriate to comment on the general
expectations we have for quantum gravity. It has been realized for some time now
that by combining elements of gravitation with elements of quantum mechanics
one is led to “interplay phenomena” with rather distinctive signatures, such as
quantum fluctuations of space-time [14–16], and violations of Lorentz and/or
CPT symmetries [17–23], but the relevant effects are expected to be very small
(because of the smallness of the Planck length). Therefore in this “intuition-
building” section the reader must expect from me a description of experiments
with a remarkable sensitivity to the new phenomena.

Let me start from the possibility of quantum fluctuations of space-time. A
prediction of nearly all approaches to the unification of gravitation and quantum
mechanics is that at very short distances the sharp classical concept of space-time
should give way to a somewhat “fuzzy” (or “foamy”) picture, possibly involving
virulent geometry fluctuations (sometimes depicted as wormholes and black holes
popping in and out of the vacuum). Although the idea of space-time foam re-
mains somewhat vague and it appears to have significantly different incarnations
in different quantum-gravity approaches, a plausible expectation that emerges
from this framework is that the distance between two bodies “immerged” in
the space-time foam would be affected by (quantum) fluctuations. If urged to
give a rough description of these fluctuations at present theorists can only guess
that they would be of Planck length Lp (Lp ∼ 10−35m) magnitude and occur-
ring at a frequency of roughly one per Planck time Tp (Tp = Lp/c ∼ 10−44s).
One should therefore deem significant for space-time-foam research any exper-
iment that monitors the distances between two bodies with enough sensitiv-
ity to test this type of fluctuations. This is exactly what was achieved by the
analysis reported in Refs. [7,24], which was based on the observation that the
most advanced modern interferometers (the ones normally used for detection of
classical gravity waves) are exactly the natural instruments to study the fuzzi-
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ness of distances. While I postpone to Section 4 a detailed discussion of these
interferometry-based tests of fuzziness, let me emphasize already here that mod-
ern interferometers have achieved such a level of sensitivity that we are already
in a position to rule out fluctuations in the distances of their test masses of the
type discussed above, i.e. fluctuations of Planck-length magnitude occurring at a
rate of one per each Planck time. This is perhaps the simplest way for the reader
to picture intuitively the type of objectives already reached by quantum-gravity
phenomenology.

Another very intuitive measure of the maturity of quantum-gravity phe-
nomenology comes from the studies of in vacuo dispersion proposed in Ref. [5]
(also see the more recent purely experimental analyses [25,26]). Deformed disper-
sion relations are a rather natural possibility for quantum gravity. For example,
they emerge naturally in quantum gravity scenarios requiring a modification of
Lorentz symmetry. Modifications of Lorentz symmetry could result from space-
time discreteness (e.g. a discrete space accommodates a somewhat different con-
cept of “rotation” with respect to the one of ordinary continuous spaces), a
possibility extensively investigated in the quantum gravity literature (see, e.g.,
Ref. [22]), and it would also naturally result from an “active” quantum-gravity
vacuum of the type advocated byWheeler and Hawking [14,15] (such a “vacuum”
might physically label the space-time points, rendering possible the selection of
a “preferred frame”). The specific structure of the deformation can differ sig-
nificantly from model to model. Assuming that the deformation admits a series
expansion at small energies E, and parametrizing the deformation in terms of an
energy1 scale EQG (a scale characterizing the onset of quantum-gravity disper-
sion effects, often identified with the Planck energy Ep = ~c/Lp ∼ 1019GeV ),
for a massless particle one would expect to be able to approximate the deformed
dispersion relation at low energies according to

c2p2 � E2

[
1 + ξ

(
E

EQG

)α

+O

((
E

EQG

)α+1
)]

(1)

where c is the conventional speed-of-light constant. The scale EQG, the power
α and the sign ambiguity ξ = ±1 would be fixed in a given dynamical frame-
work; for example, in some of the approaches based on dimensionful quantum
deformations of Poincaré symmetries [21,27,28] one encounters a dispersion re-

lation c2p2 = E2
QG

[
1− eE/EQG

]2
, which implies ξ = α = 1. Because of the

smallness of 1/EQG it was traditionally believed that this effect could not be
seriously tested experimentally (i.e. that for EQG ∼ Ep experiments would only
be sensitive to values of α much smaller than 1), but in Ref. [5] it was observed
that recent progress in the phenomenology of GRBs [29] and other astrophys-
ical phenomena should soon allow us to probe values of EQG of the order of
1 I parametrize deformations of dispersion relations in terms of an energy scale EQG,
which is implicitly assumed to be rather close to Ep, while I later parametrize the
proposals for distance fuzziness with a length scale LQG, which is implicitly assumed
to be rather close to Lp. This is sometimes convenient in formulas, but it is of course
somewhat redundant, since Ep = ~c/Lp.
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(or even greater than) Ep for values of α as large as 1. As discussed later in
these notes, α = 1 appears to be the smallest value that can be obtained with
plausible quantum-gravity arguments and several of these arguments actually
point us toward the larger value α = 2, which is still very far from present-day
experimental capabilities. While of course it would be very important to achieve
sensitivity to both the α = 1 and the α = 2 scenarios, the fact that we will soon
test α = 1 is a significant first step.

Another recently proposed quantum-gravity experiment concerns possible
violations of CPT invariance. This is a rather general prediction of quantum-
gravity approaches, which for example can be due to elements of nonlocality
(locality is one of the hypotheses of the “CPT theorem”) and/or elements of
decoherence present in the approach. At least some level of non-locality is quite
natural for quantum gravity as a theory with a natural length scale which might
also host a “minimum length” [30–32,12,33]. Motivated by the structure of “Li-
ouville strings” [19] (a non-critical string approach to quantum gravity which
appears to admit a space-time foam picture) a phenomenological parametriza-
tion of quantum-gravity induced CPT violation in the neutral-kaon system has
been proposed in Refs. [17,34]. (Other studies of the phenomenology of CPT
violation can be found in Ref. [20,35].) In estimating the parameters that ap-
pear in this phenomenological model the crucial point is as usual the overall
suppression given by some power of the Planck length. For the case in which the
Planck length enters only linearly in the relevant formulas, experiments investi-
gating the properties of neutral kaons are already setting significant bounds on
the parameters of this phenomenological approach [2].

In summary, experiments are reaching significant sensitivity with respect to
all of the frequently discussed features of quantum gravity that I mentioned at
the beginning of this section: space-time fuzziness, violations of Lorentz invari-
ance, and violations of CPT invariance. Other quantum-gravity experiments,
which I shall discuss later in these notes, can probe other candidate quantum-
gravity phenomena, giving additional breadth to quantum-gravity phenomenol-
ogy.

Before closing this section there is one more answer I should give: how could
this happen in spite of all the gloomy forecasts which one finds in most quantum-
gravity review papers? The answer is actually simple. Those gloomy forecasts
were based on the observation that under ordinary conditions the direct detec-
tion of a single quantum-gravity phenomenon would be well beyond our capabil-
ities if the magnitude of the phenomenon is suppressed by the smallness of the
Planck length. For example, in particle-physics contexts this is seen in the fact
that the contribution from “gravitons” (the conjectured mediators of quantum-
gravity interactions) to particle-physics processes with center-of-mass energy E
is expected to be penalized by overall factors given by some power of the ra-
tio E/(1019GeV ), which is an extremely small ratio even for an ideal particle
accelerators ring built all around the Earth. However, small effects can become
observable in special contexts and in particular one can always search for an
experimental setup such that a very large number of the very small quantum-
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gravity contributions are effectively summed together. This later possibility is
not unknown to the particle-physics community, since it has been exploited in
the context of investigations of the particle-physics theories unifying the strong
and electroweak interactions, were one encounters the phenomenon of proton
decay. By finding ways to keep under observation very large numbers of pro-
tons, experimentalists have managed2 to set highly significant bounds on proton
decay [37], even though the proton-decay probability is penalized by the fourth
power of the small ratio between the proton mass, which is of order 1GeV , and
the mass of the vector bosons expected to mediate proton decay, which is conjec-
tured to be of order 1016GeV . Just like proton-decay experiments are based on
a simple way to put together very many of the small proton-decay effects3 the
experiments using modern interferometers to study space-time fuzziness and the
experiments using GRBs to study violations of Lorentz invariance exploit simple
ways to put together very many of the very small quantum-gravity effects. I shall
explain this in detail in Sections 4 and 5.

3 Addendum to conclusions:
any hints to theorists from experiments?

In the preceding section I have argued that quantum-gravity phenomenology,
even being as it is in its infancy, is already starting to provide the first signif-
icant tests of plausible candidate quantum-gravity phenomena. It is of course
just “scratching the surface” of whatever “volume” contains the full collection
of experimental studies we might wish to perform, but we are finally getting
started. Of course, a phenomenology programme is meant to provide input to
the theorists working in the area, and therefore one measure of the achieve-
ments of a phenomenology programme is given by the impact it is having on
theory studies. In the case of quantum-gravity experiments the flow of informa-
tion from experiments to theory will take some time. The primary reason is that
most quantum-gravity approaches have been guided (just because there was no
alternative guidance from data) by various sorts of formal intuition for quan-
tum gravity (which of course remain pure speculations as long as they are not
confirmed by experiments). This is in particular true for the two most popular
approaches to the unification of gravitation and quantum mechanics, i.e. “criti-
cal superstrings” [38,39] and “canonical/loop quantum gravity” [40]. Because of
the type of intuition that went into them, it is not surprising that these “formal
quantum gravity approaches” are proving extremely useful in providing us new
ideas on how gravitation and quantum mechanics could resolve the apparent con-
flicts between their conceptual structures, but they are not giving us any ideas

2 This author’s familiarity [36] with the accomplishments of proton-decay experiments
has certainly contributed to the moderate optimism for the outlook of quantum-
gravity phenomenology which is found in these notes.

3 For each of the protons being monitored the probability of decay is extremely small,
but there is a significantly large probability that at least one of the many monitored
protons decay.
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on which experiments could give insight into the nature of quantum gravity. The
hope that these formal approaches could eventually lead to new intuitions for
the nature of space-time at very short distances has been realized only rather
limitedly. In particular, it is still unclear if and how these formalisms host the
mentioned scenarios for quantum fluctuations of space-time and violations of
Lorentz and/or CPT symmetries. The nature of the quantum-gravity vacuum
(in the sense discussed in the preceding section) appears to be still very far ahead
in the critical superstring research programme and its analysis is only at a very
preliminary stage within canonical/loop quantum gravity. In order for the exper-
iments discussed in these notes to affect directly critical superstring research and
research in canonical/loop quantum gravity it is necessary to make substantial
progress in the analysis of the physical implications of these formalisms.

Still, in an indirect way the recent results of quantum-gravity phenomenology
have already started to have an impact on theory work in these formal quantum
gravity approaches. The fact that it is becoming clear that (at least a few)
quantum-gravity experiments can be done has reenergized efforts to explore the
physical implications of the formalisms. The best example of this way in which
phenomenology can influence “pure theory” work is provided by Ref. [41], which
was motivated by the results reported in Ref. [5] and showed that canonical/loop
quantum gravity admits (under certain conditions, which in particular involve
some parity breaking) the phenomenon of deformed dispersion relations, with
deformation going linearly with the Planck length.

While the impact on theory work in the formal quantum gravity approaches
is still quite limited, of course the new experiments are providing useful input
for more intuitive/phenomelogical theoretical work on quantum gravity. For ex-
ample, the analysis reported in Refs. [7,24], by ruling out the scheme of distance
fluctuations of Planck length magnitude occurring at a rate of one per Planck
time, has had significant impact [24,42] on the line of research which has been
deriving intuitive pictures of properties of quantum space-time from analyses
of measurability and uncertainty relations [12,43–45]. Similarly the “Liouville
string” [19] inspired phenomenological approach to quantum gravity [34,46] has
already received important input from the mentioned studies of the neutral-kaon
system and will receive equally important input from the mentioned GRB exper-
iments, once these experiments (in a few years) reach Planck-scale sensitivity.

It is possible that the availability of quantum-gravity experiments might also
affect quantum-gravity theory in a more profound way: by leading to an increase
in the amount of work devoted to intuitive phenomenological models. As men-
tioned the fact that until very recently no experiments were possible has caused
most theoretical work on quantum gravity to be guided by formal intuition.
Among all scientific fields quantum gravity is perhaps at present the one with
the biggest unbalance between theoretical research devoted to formal aspects and
theoretical research devoted to phenomenological aspects. In the next few years
there could be an opportunity to render more balanced the theoretical effort
on quantum gravity. This might happen not only because of the availability of
an experimental programme but also because some of the formal approaches to
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quantum gravity have recently made such remarkable progress that they might
soon be in a position to make the final leap toward physical predictions.

4 Interferometry and fuzzy space-time

In the preceding two sections I have described the conclusions which I believe
to be supported by the present status of quantum-gravity phenomenology. Let
me now start providing some support for those conclusions by reviewing my
proposal [7,24] of using modern interferometers to set bounds on space-time
fuzziness. I shall articulate this in subsections because some preliminaries are in
order. Before going to the analysis of experimental data it is in fact necessary to
give a proper (operative) definition of fuzzy distance and give a description of
the type of stochastic properties one might expect of quantum-gravity-induced
fluctuations of distances.

4.1 Operative definition of fuzzy distance

While nearly all approaches to the unification of gravity and quantum mechanics
appear to lead to a somewhat fuzzy picture of space-time, within the various
formalisms it is often difficult to characterize physically this fuzziness. Rather
than starting from formalism, I shall advocate an operative definition of fuzzy
space-time. More precisely for the time being I shall just consider the concept of
fuzzy distance. I shall be guided by the expectation that at very short distances
the sharp classical concept of distance should give way to a somewhat fuzzy
distance. Since interferometers are ideally suited to monitor the distance between
test masses, I choose as operative definition of quantum-gravity induced fuzziness
one which is expressed in terms of quantum-gravity induced noise in the read-out
of interferometers.

In order to properly discuss this proposed definition it will prove useful to
briefly review some aspects of the physics of modern Michelson-type interferom-
eters. These are schematically composed [47] of a (laser) light source, a beam
splitter and two fully-reflecting mirrors placed at a distance L from the beam
splitter in orthogonal directions. The light beam is decomposed by the beam
splitter into a transmitted beam directed toward one of the mirrors and a re-
flected beam directed toward the other mirror; the beams are then reflected by
the mirrors back toward the beam splitter, where [47] they are superposed4.
The resulting interference pattern is extremely sensitive to changes in the posi-
tions of the mirrors relative to the beam splitter. The achievable sensitivity is

4 Although all modern interferometers rely on the technique of folded interferometer’s
arms (the light beam bounces several times between the beam splitter and the mirrors
before superposition), I shall just discuss the simpler “no-folding” conceptual setup.
The readers familiar with the subject can easily realize that the observations here
reported also apply to more realistic setups, although in some steps of the derivations
the length L would have to be understood as the optical length (given by the actual
length of the arms multiplied by the number of foldings).
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so high that planned interferometers [48,49] with arm lengths L of 3 or 4 Km
expect to detect gravity waves of amplitude h as low as 3 · 10−22 at frequencies
of about 100Hz. This roughly means that these modern gravity-wave interfer-
ometers should monitor the (relative) positions of their test masses (the beam
splitter and the mirrors) with an accuracy [50] of order 10−18m and better.

In achieving this remarkable accuracy experimentalists must deal with clas-
sical physics displacement noise sources (e.g., thermal and seismic effects induce
fluctuations in the relative positions of the test masses) and displacement noise
sources associated to effects of ordinary quantum mechanics (e.g., the combined
minimization of photon shot noise and radiation pressure noise leads to an irre-
ducible noise source which has its root in ordinary quantum mechanics [47]). The
operative definition of fuzzy distance which I advocate characterizes the corre-
sponding quantum-gravity effects as an additional source of displacement noise.
A theory in which the concept of distance is fundamentally fuzzy in this operative
sense would be such that even in the idealized limit in which all classical-physics
and ordinary-quantum-mechanics noise sources are completely eliminated the
read-out of an interferometer would still be noisy as a result of quantum-gravity
effects.

Upon adopting this operative definition of fuzzy distance, interferometers are
of course the natural tools for experimental tests of proposed distance-fuzziness
scenarios.

I am only properly discussing distance fuzziness although ideas on space-
time foam would also motivate investigations of time fuzziness. It is not hard
to modify the definition here advocated for distance fuzziness to describe time
fuzziness by replacing the interferometer with some device that keeps track of the
synchronization of a pair of clocks5 I shall not pursue this matter further since
I seem to understand6 that sensitivity to time fluctuations is still significantly
behind the type of sensitivity to distance fluctuations achievable with modern
Michelson-type experiments.

4.2 Random-walk noise from random-walk models
of quantum space-time fluctuations

As already mentioned in Section 2, it is plausible that a quantum space-time
might involve in particular the fact that a distance D would be affected by
fluctuations of magnitude Lp ∼ 10−35m occurring at a rate of roughly one per
each time interval of magnitude tp = Lp/c ∼ 10−44s. Experiments monitoring
the distance D between two bodies for a time Tobs (in the sense appropriate, e.g.,

5 Actually, a realistic analysis of ordinary Michelson-type interferometers is likely to
lead to a contribution from space-time foam to noise levels that is the sum (in some
appropriate sense) of the effects due to distance fuzziness and time fuzziness (e.g.
associated to the frequency/time measurements involved).

6 This understanding is mostly based on recent conversations with G. Busca and
P. Thomann who are involved in the next generation of ultra-precise clocks to be
realized in microgravity (outer space) environments.
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for an interferometer) could involve a total effect amounting to nobs ≡ Tobs/tp
randomly directed fluctuations of magnitude Lp. An elementary analysis allows
to establish that in such a context the root-mean-square deviation σD would be
proportional to

√
Tobs:

σD ∼
√

cLpTobs . (2)

From the type of Tobs-dependence of Eq. (2) it follows [7] that the correspond-
ing quantum fluctuations should have displacement amplitude spectral density
S(f) with the f−1 dependence7 typical of “random walk noise” [51]:

S(f) = f−1
√

c Lp . (3)

In fact, there is a general connection between σ ∼
√
Tobs and S(f) ∼ f−1, which

follows [51] from the general relation

σ2 =

∫ fmax

1/Tobs

[S(f)]2 df , (4)

valid for a frequency band limited from below only by the time of observation
Tobs.

The displacement amplitude spectral density (3) provides a very useful char-
acterization of the random-walk model of quantum space-time fluctuations pre-
scribing fluctuations of magnitude Lp occurring at a rate of roughly one per each
time interval of magnitude Lp/c. If somehow we have been assuming the wrong
magnitude of distance fluctuations or the wrong rate (also see Subsection 4.4)
but we have been correct in taking a random-walk model of quantum space-time
fluctuations Eq. (3) should be replaced by

S(f) = f−1
√

c LQG , (5)

where LQG is the appropriate length scale that takes into account the correct
values of magnitude and rate of the fluctuations.

If one wants to be open to the possibility that the nature of the stochastic
processes associated to quantum space-time be not exactly (also see Section 8)
the one of a random-walk model of quantum space-time fluctuations, then the
f -dependence of the displacement amplitude spectral density could be different.
This leads one to consider the more general parametrization

S(f) = f−β cβ−
1
2 (Lβ)

3
2−β . (6)

In this general parametrization the dimensionless quantity β carries the infor-
mation on the nature of the underlying stochastic processes, while the length
7 Of course, in light of the nature of the arguments used, one expects that an f−1

dependence of the quantum-gravity induced S(f) could only be valid for frequencies f
significantly smaller than the Planck frequency c/Lp and significantly larger than the
inverse of the time scale over which, even ignoring the gravitational field generated
by the devices, the classical geometry of the space-time region where the experiment
is performed manifests significant curvature effects.
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scale Lβ carries the information on the magnitude and rate of the fluctuations. I
am assigning an index β to Lβ just in order to facilitate a concise description of
experimental bounds; for example, if the fluctuations scenario with, say, β = 0.6
was ruled out down to values of the effective length scale of order, say, 10−27m I
would just write Lβ=0.6 < 10−27m. As I will discuss in Section 8, one might be
interested in probing experimentally all values of β in the range 1/2 ≤ β ≤ 1,
with special interest in the cases β = 1 (the case of random-walk models whose
effective length scale I denominated with LQG ≡ Lβ=1), β = 5/6, and β = 1/2.

4.3 Comparison with gravity-wave interferometer data

Before discussing experimental bounds on Lβ from gravity-wave interferome-
ters, let us fully appreciate the significance of these bounds by getting some
intuition on the actual magnitude of the quantum fluctuations I am discussing.
One intuition-building observation is that even for the case β = 1, which among
the cases I consider is the one with the most virulent space-time fluctuations,
the fluctuations predicted are truly minute: the β = 1 relation (2) only predicts
fluctuations with standard deviation of order 10−5m on a time of observation
as large as 1010 years (the size of the whole observable universe is about 1010

light years!!). In spite of the smallness of these effects, the precision [47] of mod-
ern interferometers (the ones whose primary objective is the detection of the
classical-gravity phenomenon of gravity waves) is such that we can obtain sig-
nificant information at least on the scenarios with values of β toward the high
end of the interesting interval 1/2 ≤ β ≤ 1, and in particular we can investigate
quite sensitively the intuitive case of the random-walk model of space-time fluc-
tuations. The operation of gravity-wave interferometers is based on the detection
of minute changes in the positions of some test masses (relative to the position
of a beam splitter). If these positions were affected by quantum fluctuations of
the type discussed above, the operation of gravity-wave interferometers would
effectively involve an additional source of noise due to quantum gravity.

This observation allows to set interesting bounds already using existing
noise-level data obtained at the Caltech 40-meter interferometer, which has
achieved displacement noise levels with amplitude spectral density lower than
10−18m/

√
Hz for frequencies between 200 and 2000 Hz [50]. While this is still

very far from the levels required in order to probe significantly the lowest values
of β (for Lβ=1/2 ∼ Lp and f ∼ 1000Hz the quantum-gravity noise induced

in the β = 1/2 scenario is only of order 10−36m/
√
Hz), these sensitivity lev-

els clearly rule out all values of LQG (i.e. Lβ=1) down to the Planck length.
Actually, even values of LQG significantly smaller than the Planck length are
inconsistent with the data reported in Ref. [50]; in particular, from the observed
noise level of 3 · 10−19m/

√
Hz near 450 Hz, which is the best achieved at the

Caltech 40-meter interferometer, one obtains [7] the bound LQG ≤ 10−40m. As
discussed above, the simplest random-walk model of distance fluctuations, the
one with fluctuations of magnitude Lp occurring at a rate of one per each tp
time interval, would correspond to the prediction LQG ∼ Lp ∼ 10−35m and it
is therefore ruled out by these data. This experimental information implies
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that, if one was to insist on this type models, realistic random-walk models
of quantum space-time fluctuations would have to be significantly less noisy
(smaller prediction for LQG) than the intuitive one which is now ruled out.
Since, as I shall discuss, there are rather plausible scenarios for significantly less
noisy random-walk models, it is important that experimentalists keep pushing
forward the bound on LQG. More stringent bounds on LQG are within reach of
the LIGO/VIRGO [48,49] generation of gravity-wave interferometers.8

In planning future experiments, possibly taylored to test these effects (un-
like LIGO and VIRGO which were tailored around the properties needed for
gravity-wave detection), it is important to observe that an experiment achieving
displacement noise levels with amplitude spectral density S∗ at frequency f∗

will set a bound on Lβ of order

Lβ <
[
S∗ (f∗)β c(1−2β)/2

]2/(3−2β)

, (7)

which in particular for random-walk models takes the form

Lβ <

[
S∗ f∗
√
c

]2

. (8)

The structure of Eq. (7) (and Eq. (8)) shows that there can be instances in which
a very large interferometer (the ideal tool for low-frequency studies) might not
be better than a smaller interferometer, if the smaller one achieves a very small
value of S∗.

The formula (7) can also be used to describe as a function of β the bounds on
Lβ achieved by the data collected at the Caltech 40-meter interferometer. Using

again the fact that a noise level of only S∗ ∼ 3 · 10−19m/
√
Hz near f∗ ∼ 450 Hz

was achieved [50], one obtains the bounds

[Lβ ]caltech <

[
3 · 10−19m√

Hz
(450Hz)β c(1−2β)/2

]2/(3−2β)

. (9)

Let me comment in particular on the case β = 5/6 which might deserve
special attention because of its connection (which was derived in Refs. [7,24]
and will be reviewed here in Section 8) with certain arguments for bounds on
the measurability of distances in quantum gravity [24,45,43]. From Eq. (9) we

8 Besides allowing an improvement on the bound on LQG intended as a universal prop-
erty of Nature, the LIGO/VIRGO generation of interferometers will also allow us to
explore the idea that LQG might be a scale that depends on the experimental context
in such a way that larger interferometers pick up more of the space-time fluctuations.
Based on the intuition coming from the Salecker-Wigner limit (here reviewed in Sec-
tion 8), or just simply on phenomenological models in which distance fluctuations
affect equally each Lp-long segment of a given distance, it would not be surprising
if LQG was a growing function of the length of the arms of the interferometer. This
gives added significance to the step from the 40-meter arms of the existing Caltech
interferometer to the few-Km arms of LIGO/VIRGO interferometers.
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find that Lβ=5/6 is presently bound to the level Lβ=5/6 ≤ 10−29m. This bound
is remarkably stringent in absolute terms, but is still quite far from the range of
values one ordinarily considers as likely candidates for length scales appearing
in quantum gravity. A more significant bound on Lβ=5/6 should be obtained by
the LIGO/VIRGO generation of gravity-wave interferometers. For example, it is
plausible [48] that the “advanced phase” of LIGO achieve a displacement noise
spectrum of less than 10−20m/

√
Hz near 100 Hz and this would probe values of

Lβ=5/6 as small as 10−34m.
In closing this subsection on interferometry data analysis relevant for space-

time fuzziness scenarios, let me clarify how it happened that such small effects
could be tested. As I already mentioned, one of the viable strategies for quantum-
gravity experiments is the one finding ways to put together very many of the
very small quantum-gravity effects. In these interferometric studies that I pro-
posed in Ref. [7] one does indeed effectively sum up a large number of quantum
space-time fluctuations. In a time of observation as long as the inverse of the
typical gravity-wave interferometer frequency of operation an extremely large
number of minute quantum fluctuations could affect the distance between the
test masses. Although these fluctuations average out, they do leave traces in the
interferometer. These traces grow with the time of observation: the standard de-
viation increases in correspondence of increases of the time of observation, while
the amplitude spectral density of noise increases in correspondence of decreases
of frequency (which again effectively means increases of the time of observation).
From this point of view it is not surprising that plausible quantum-gravity sce-
narios (1/2 ≤ β ≤ 1) all involve higher noise at lower frequencies: the observation
of lower frequencies requires longer times and is therefore affected by a larger
number of quantum-gravity fluctuations.

4.4 Less noisy random-walk models of distance fluctuations?

The most significant result obtained in Refs. [7,24] and reviewed in the preceding
subsection is that we can rule out the intuitive picture in which the distances
between the test masses of the interferometer are affected by fluctuations of
magnitude Lp occurring at a rate of one per each tp time interval. Does this rule
out completely the possibility of a random-walk model of distance fluctuations?
or are we just learning that the most intuitive/naive example of such a model
does not work, but there are other plausible random-walk models?

Without wanting to embark on a discussion of the plausibility of less noisy
random-walk models, I shall nonetheless discuss some ideas which could lead to
this noise reduction. Let me start by observing that certain studies of measura-
bility of distances in quantum gravity (see Ref. [24] and the brief review of those
arguments which is provided in parts of Section 8) can be interpreted as suggest-
ing that LQG might not be a universal length scale, i.e. it might depend on some
specific properties of the experimental setup (particularly the energies/masses
involved), and in some cases LQG could be significantly smaller than Lp.

Another possibility one might want to consider [24] is the one in which the
quantum properties of space-time are such that fluctuations of magnitude Lp
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would occur with frequency somewhat lower than 1/tp. This might happen for
various reasons, but a particularly intriguing possibility9 is the one of theories
whose fundamental objects are not pointlike, such as the popular string theories.
For such theories it is plausible that fluctuations occurring at the Planck-distance
level might have only a modest impact on extended fundamental objects charac-
terized by a length scale significantly larger than the Planck length (e.g. in string
theory the string size, or “length”, might be an order of magnitude larger than
the Planck length). This possibility is interesting in general for quantum-gravity
theories with a hierarchy of length scales, such as certain “M-theory motivated”
scenarios with an extra length scale associated to the compactification from 11
to 10 dimensions.

Yet another possibility for a random-walk model to cause less noise in inter-
ferometers could emerge if somehow the results of the schematic analysis adopted
here and in Refs. [7,24] turned out to be significantly modified once we become
capable of handling all of the details of a real interferometer. To clarify which
type of details I have in mind let me mention as an example the fact that in my
analysis the structure of the test masses was not taken into account in any way:
they were essentially treated as point-like. It would not be too surprising if we
eventually became able to construct theoretical models taking into account the
interplay between the binding forces that keep together (“in one piece”) a macro-
scopic test mass as well as some random-walk-type fundamental fluctuations of
the space-time in which these macroscopic bodies “live”. The interference pat-
tern observed in the laboratory reflects the space-time fluctuations only filtered
through their interplay with the mentioned binding forces of the macroscopic test
masses. These open issues are certainly important and a lot of insight could be
gained through their investigation, but there is also some confusion that might
easily result10 from simple-minded considerations (possibly guided by intuition
developed using rudimentary table-top interferometers) concerning the macro-

9 This possibility emerged in discussions with Gabriele Veneziano. In response to my
comments on the possibility of fluctuations with frequency somewhat lower than
1/tp Gabriele made the suggestion that extended fundamental objects might be less
susceptible than point particles to very localized space-time fluctuations. It would
be interesting to work out in some detail an example of dynamical model of strings
in a fuzzy space-time.

10 In particular, these and other elements of confusion are responsible for the incorrect
conclusions on the Salecker-Wigner measurability limit which were drawn in the very
recent Ref. [52]. The analysis reported in Ref. [52] relies on assumptions which are
unjustified in the context of the Salecker-Wigner analysis (while they would be justi-
fied in the context of certain measurements using rudimentary table-top experimental
setups). Contrary to the claim made in Ref. [52], the source of

√
Tobs uncertainty

considered by Salecker and Wigner cannot be truly eliminated; unsurprisingly, it can
only be traded for another source of

√
Tobs uncertainty. Some of the comments made

in Ref. [52] also ignore the fact that, as already emphasized in Ref. [24] (and reviewed
in Section 8 of these notes), only a relatively small subset of the quantum-gravity
ideas that can be probed with modern interferometers is directly motivated by the
Salecker-Wigner limit, while the bulk of the insight we can expect from such interfer-
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scopic nature of the test masses used in modern interferometers. In closing this
section let me try to offer a few relevant clarifications. I need to start by adding
some comments on the stochastic processes I have been considering. In most
physical contexts a series of random steps does not lead to

√
Tobs dependence of

σ because often the context is such that through the fluctuation-dissipation theo-
rem the source of

√
Tobs dependence is (partly) compensated (some sort of restor-

ing effect). The hypothesis explored in these discussions of random-walk models
of space-time fuzziness is that the type of underlying dynamics of quantum
space-time be such that the fluctuation-dissipation theorem be satisfied without
spoiling the

√
Tobs dependence of σ. This is an intuition which apparently is

shared by other authors; for example, the study reported in Ref. [53] (which
followed by a few months Ref. [7], but clearly was the result of completely inde-
pendent work) also models some implications of quantum space-time (the ones
that affect clocks) with stochastic processes whose underlying dynamics does not
produce any dissipation and therefore the “fluctuation contribution” to the Tobs
dependence is left unmodified, although the fluctuation-dissipation theorem is
fully taken into account. Since a mirror of an interferometer of LIGO/VIRGO
type is in practice an extremity of a pendulum, another aspect that the reader
might at first find counter-intuitive is that the

√
Tobs dependence of σ, although

coming in with a very small prefactor, for extremely large Tobs would seem to
give values of σ too large to be consistent with the structure of a pendulum.
This is a misleading intuition which originates from the experience with ordi-
nary (non-quantum-gravity) analyses of the pendulum. In fact, the dynamics of
an ordinary pendulum has one extremity “fixed” to a very heavy macroscopic
and rigid body, while the other extremity is fixed to a much lighter (but, of
course, still macroscopic) body. The usual stochastic processes considered in the
study of the pendulum affect the heavier body in a totally negligible way, while
they have strong impact on the dynamics of the lighter body. A pendulum an-
alyzed according to a random-walk model of space-time fluctuations would be
affected by stochastic processes which are of the same magnitude both for its
heavier and its lighter extremity. [The bodies are fluctuating along with intrin-
sic space-time fluctuations, rather than fluctuating as a result of, say, collisions
with air particles occurring in a conventional space-time.] In particular, in the
directions orthogonal to the vertical axis the stochastic processes affect the po-
sition of the center of mass of the entire pendulum just as they would affect
the position of the center of mass of any other body (the spring that connects
the two extremities of the pendulum would not affect the motion of the overall
center of mass of the pendulum).

5 Gamma-ray bursts and in-vacuo dispersion

Let me now discuss the proposal put forward in Ref. [5] (also see Ref. [54]),
which exploits the recent confirmation that at least some gamma-ray bursters

ometric studies concerns the stochastic properties of ”foamy” models of space-time,
which are intrinsically interesting independently of the Salecker-Wigner limit.
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are indeed at cosmological distances [55–58], making it possible for observations
of these to provide interesting constraints on the fundamental laws of physics.
In particular, such cosmological distances combine with the short time structure
seen in emissions from some GRBs [59] to provide ideal features for tests of possi-
ble in vacuo dispersion of electromagnetic radiation from GRBs, of the type one
might expect based on the intuitive quantum-gravity arguments reviewed in Sec-
tion 2. As mentioned, a quantum-gravity-induced deformation of the dispersion
relation for photons would naturally take the form c2p2 = E2 [1 +F(E/EQG)],
where EQG is an effective quantum-gravity energy scale and F is a model-
dependent function of the dimensionless ratio E/EQG. In quantum-gravity sce-
narios in which the Hamiltonian equation of motion ẋi = ∂ H/∂ pi is still valid
(at least approximately valid; valid to an extent sufficient to justify the analysis
that follows) such a deformed dispersion relation would lead to energy-dependent
velocities for massless particles, with implications for the electromagnetic signals
that we receive from astrophysical objects at large distances. At small energies
E � EQG, it is reasonable to expect that a series expansion of the dispersion
relation should be applicable leading to the formula (1). For the case α = 1,
which is the most optimistic (largest quantum-gravity effect) among the cases
discussed in the quantum-gravity literature, the formula (1) reduces to

c2p2 � E2

(
1 + ξ

E

EQG

)
. (10)

Correspondingly one would predict the energy-dependent velocity formula

v =
∂E

∂p
∼ c

(
1− ξ

E

EQG

)
. (11)

To elaborate a bit more than I did in Section 2 on the intuition that leads to this
type of candidate quantum-gravity effect let me observe that [5] velocity disper-
sion such as described in (11) could result from a picture of the vacuum as a
quantum-gravitational ‘medium’, which responds differently to the propagation
of particles of different energies and hence velocities. This is analogous to propa-
gation through a conventional medium, such as an electromagnetic plasma [60].
The gravitational ‘medium’ is generally believed to contain microscopic quan-
tum fluctuations, such as the ones considered in the previous sections. These
may [61] be somewhat analogous to the thermal fluctuations in a plasma, that
occur on time scales of order t ∼ 1/T , where T is the temperature. Since it is
a much ‘harder’ phenomenon associated with new physics at an energy scale
far beyond typical photon energies, any analogous quantum-gravity effect could
be distinguished by its different energy dependence: the quantum-gravity effect
would increase with energy, whereas conventional medium effects decrease with
energy in the range of interest [60].

Also relevant for building some quantum-gravity intuition for this type of in
vacuo dispersion and deformed velocity law is the observation [46,23] that this
has implications for the measurability of distances in quantum gravity that fit
well with the intuition emerging from heuristic analyses [12] based on a combi-
nation of arguments from ordinary quantum mechanics and general relativity.
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[This connection between dispersion relations and measurability bounds will be
here reviewed in Section 8.]

Notably, recent work [41] has provided evidence for the possibility that the
popular canonical/loop quantum gravity [40] might be among the theoretical
approaches that admit the phenomenon of deformed dispersion relations with
the deformation going linearly with the Planck length (Lp ∼ 1/Ep). Similarly,
evidence for this type of dispersion relations has been found [46] in Liouville (non-
critical) strings [19], whose development was partly motivated by an intuition
concerning the “quantum-gravity vacuum” that is rather close to the one tra-
ditionally associated to the works of Wheeler [14] and Hawking [15]. Moreover,
the phenomenon of deformed dispersion relations with the deformation going
linearly with the Planck length fits rather naturally within certain approaches
based on non-commutative geometry and deformed symmetries. In particular,
there is growing evidence [23,27,28] for this phenomenon in theories living in
the non-commutative Minkowski space-time proposed in Refs. [62,63,21], which
involves a dimensionful (presumably Planck-length related) deformation param-
eter.

Equation (11) encodes a minute modification for most practical purposes,
since EQG is believed to be a very high scale, presumably of order the Planck
scale Ep ∼ 1019 GeV. Nevertheless, such a deformation could be rather signif-
icant for even moderate-energy signals, if they travel over very long distances.
According to (11) two signals respectively of energy E and E + ∆E emitted
simultaneously from the same astrophysical source in traveling a distance L ac-
quire a “relative time delay” |δt| given by

|δt| ∼ ∆E

EQG

L

c
. (12)

Such a time delay can be observable if ∆E and L are large while the time scale
over which the signal exhibits time structure is small. As mentioned, these are the
respects in which GRBs offer particularly good prospects for such measurements.
Typical photon energies in GRB emissions are in the range 0.1− 100 MeV [59],
and it is possible that the spectrum might in fact extend up to TeV energies [64].
Moreover, time structure down to the millisecond scale has been observed in the
light curves [59], as is predicted in the most popular theoretical models [65]
involving merging neutron stars or black holes, where the last stages occur on
the time scales associated with grazing orbits. Similar time scales could also occur
in models that identify GRBs with other cataclysmic stellar events such as failed
supernovae Ib, young ultra-magnetized pulsars or the sudden deaths of massive
stars [66]. We see from equations (11) and (12) that a signal with millisecond
time structure in photons of energy around 10 MeV coming from a distance of
order 1010 light years, which is well within the range of GRB observations and
models, would be sensitive to EQG of order the Planck scale.

In order to set a definite bound on EQG it is necessary to measure L and
to measure the time of arrival of different energy/wavelength components of a
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sharp peak within the burst. From Eq. (12) it follows that one could set a bound

EQG > ∆E
L

c |τ | (13)

by establishing the times of arrival of the peak to be the same up to an uncer-
tainty τ in two energy channels E and E+∆E. Unfortunately, at present we have
data available only on a few GRBs for which the distance L has been determined
(the first measurements of this type were obtained only in 1997), and these are
the only GRBs which can be reliably used to set bounds on the new effect. More-
over, mostly because of the nature of the relevant experiments (particularly the
BATSE detector on the Compton Gamma Ray Observatory), for a large ma-
jority of the GRBs on record only the portion of the burst with energies up to
the MeV energy scale was observed, whereas higher energies would be helpful for
the study of the phenomenon of quantum-gravity induced dispersion here consid-
ered (which increases linearly with energy). We expect significant improvements
in these coming years. The number of GRBs with attached distance measure-
ment should rapidly increase. A new generation of orbiting spectrometers, e.g.
AMS [67] and GLAST [68], are being developed, whose potential sensitivities
are very impressive. For example, assuming a E−2 energy spectrum, GLAST
would expect to observe about 25 GRBs per year at photon energies exceeding
100 GeV, with time resolution of microseconds. AMS would observe a similar
number at E > 10 GeV with time resolution below 100 nanoseconds.

While we wait for these new experiments, preliminary bounds can already
be set with available data. Some of these bounds are “conditional” in the sense
that they rely on the assumption that the relevant GRB originated at distances
corresponding to redshift of O(1) (corresponding to a distance of ∼ 3000 Mpc),
which appears to be typical. Let me start by considering the “conditional” bound
(first considered in Ref. [5]) which can be obtained from data on GRB920229.
GRB920229 exhibited [69] micro-structure in its burst at energies up to ∼
200 KeV. In Ref. [5] it was estimated conservatively that a detailed time-series
analysis might reveal coincidences in different BATSE energy bands on a time-
scale ∼ 10−2 s, which, assuming redshift of O(1) (the redshift of GRB920229
was not measured) would yield sensitivity to EQG ∼ 1016 GeV (it would allow
to set a bound EQG > 1016 GeV).

As observed in Ref. [54], a similar sensitivity might be obtainable with
GRB980425, given its likely identification with the unusual supernova 1998bw
[70]. This is known to have taken place at a redshift z = 0.0083 corresponding to
a distance D ∼ 40 Mpc (for a Hubble constant of 65 km sec−1Mpc−1) which is
rather smaller than a typical GRB distance. However GRB980425 was observed
by BeppoSAX at energies up to 1.8 MeV, which gains back an order of magni-
tude in the sensitivity. If a time-series analysis were to reveal structure at the
∆t ∼ 10−3 s level, which is typical of many GRBs [71], it would yield the same
sensitivity as GRB920229 (but in this case, in which a redshift measurement is
available, one would have a definite bound, whereas GRB920229 only provides
a “conditional” bound of the type discussed above).
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Ref. [54] also observed that an interesting (although not very “robust”) bound
could be obtained using GRB920925c, which was observed by WATCH [72]
and possibly in high-energy γ rays by the HEGRA/AIROBICC array above
20 TeV [73]. Several caveats are in order: taking into account the appropriate
trial factor, the confidence level for the signal seen by HEGRA to be related to
GRB920925c is only 99.7% (∼ 2.7σ), the reported directions differ by 90, and
the redshift of the source is unknown. Nevertheless, the potential sensitivity is
impressive. The events reported by HEGRA range up to E ∼ 200 TeV, and the
correlation with GRB920925c is within ∆t ∼ 200 s. Making the reasonably con-
servative assumption that GRB920925c occurred no closer than GRB980425,
viz. ∼ 40Mpc, one finds a minimum sensitivity to EQG ∼ 1019 GeV, mod-
ulo the caveats listed above. Even more spectacularly, several of the HEGRA
GRB920925c candidate events occurred within ∆t ∼ 1 s, providing a potential
sensitivity even two orders of magnitude higher.

As illustrated by this discussion, the GRBs have remarkable potential for the
study of in vacuo dispersion, which will certainly lead to impressive bounds/tests
as soon as improved experiments are put into operation, but at present the best
GRB-based bounds are either “conditional” (example of GRB92022) or “not
very robust”(example of GRB920925c). As a result, at present the best (reliable)
bound has been extracted [74] using data from the Whipple telescope on a TeV
γ-ray flare associated with the active galaxy Mrk 421. This object has a redshift
of 0.03 corresponding to a distance of∼ 100 Mpc. Four events with γ-ray energies
above 2 TeV have been observed within a period of 280 s. These provide [74] a
definite limit EQG > 4× 1016 GeV.

In passing let me mention that (as observed in Ref. [5,46]) pulsars and super-
novae, which are among the other astrophysical phenomena that might at first
sight appear well suited for the study of in vacuo dispersion, do not actually
provide interesting sensitivities. Although pulsar signals have very well defined
time structure, they are at relatively low energies and are presently observable
over distances of at most 104 light years. If one takes an energy of order 1 eV
and postulates generously a sensitivity to time delays as small as 1 µsec, one
nevertheless reaches only an estimated sensitivity to EQG ∼ 109 GeV. With new
experiments such as AXAF it may be possible to detect X-ray pulsars out to 106

light years, but this would at best push the sensitivity up to EQG ∼ 1011 GeV.
Concerning supernovae, it is important to take into account that neutrinos from
Type II events similar to SN1987a, which should have energies up to about
100 MeV with a time structure that could extend down to milliseconds, are
likely to be detectable at distances of up to about 105 light years, providing
sensitivity to EQG ∼ 1015 GeV, which is remarkable in absolute terms, but is
still significantly far from the Planck scale and anyway cannot compete with the
type of sensitivity achievable with GRBs.

It is rather amusing that GRBs can provide such a good laboratory for inves-
tigations of in vacuo dispersion in spite of the fact that the short-time structure
of GRB signals is still not understood. The key point of the proposal in Ref. [5]
is that sensitive tests can be performed through the serendipitous detection of
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short-scale time structure [69] at different energies in GRBs which are established
to be at cosmological distances. Detailed features of burst time series enable (as
already shown in several examples) the emission times in different energy ranges
to be put into correspondence. Any time shift due to quantum-gravity would
increase with the photon energy, and this characteristic dependence is separable
from more conventional in-medium-physics effects, which decrease with energy.
To distinguish any quantum-gravity induced shift from effects due to the source,
one can use the fact that the quantum-gravity effect here considered is linear in
the GRB distance.

This last remark applies to all values of α, but most of the observations and
formulas in this section are only valid in the case α = 1 (linear suppression).
The generalization to cases with α �= 1 is however rather simple; for example,
Eq. (13) takes the form (up to coefficients of order 1)

EQG >

[
[(E +∆E)α −Eα]

L

c |τ |

]1/α

. (14)

Notice that here, because of the non-linearity, the right-hand side depends both
on E and ∆E.

Before moving on to other experiments let me clarify what is the key ingre-
dient of this experiment using observations of gamma rays from distant astro-
physical sources that allowed to render observable the minute quantum-gravity
effects. The ingredient is very similar to the one relevant for the studies of space-
time fuzziness using modern interferometers, which I discussed in the preceding
section; in fact, the gamma rays here considered are affected by a very large
number of the minute quantum-gravity effects. Each of the dispersion-inducing
quantum-gravity effect is very small, but the gamma rays emitted by distant
astrophysical sources travel for a very long time before reaching us and can
therefore be affected by an extremely large number of such effects.

6 Other quantum-gravity experiments

In this section I provide brief reviews of some other quantum-gravity experi-
ments. The fact that the discussion here provided for these experiments is less
detailed than the preceding discussions of the interferometry-based and GRB-
based experiments is not to be interpreted as indicating that these experiments
are somehow less significant: it is just that a detailed discussion of a couple of
examples was sufficient to provide to the reader some general intuition on the
strategy behind quantum-gravity experiments and it was natural for me to use
as examples the ones I am most familiar with. For the experiments discussed in
this section I shall just give a rough idea of the quantum-gravity scenarios that
could be tested and of the experimental procedures which have been proposed.

6.1 Neutral kaons and CPT violation

One of the formalisms that has been proposed [17,2] for the evolution equations
of particles in the space-time foam relies on a density-matrix picture. The foam
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is seen as providing a sort of environment inducing quantum decoherence even
on isolated systems (i.e. systems which only interact with the foam). A given
non-relativistic system (such as the neutral kaons studied by the CPLEAR col-
laboration at CERN) is described by a density matrix ρ that satisfies an evolu-
tion equation analogous to the one ordinarily used for the quantum mechanics
of certain open systems:

∂tρ = i[ρ,H ] + δH ρ (15)

where H is the ordinary Hamiltonian and δH , which has a non-commutator
structure [2], represents the effects of the foam. δH is expected to be extremely
small, suppressed by some power of the Planck length. The precise form of δH
(which in particular would set the level of the new physics by establishing how
many powers of the Planck length suppress the effect) has not yet been de-
rived from some full-grown quantum gravity11, and therefore phenomenological
parametrizations have been introduced (see Refs. [17,75,20,35]). For the case in
which the effects are only suppressed by one power of the Planck length (lin-
ear suppression) recent neutral-kaon experiments, such as the ones performed by
CPLEAR, have set significant bounds [2] on the associated CPT-violation effects
and forthcoming experiments are likely to push these bounds even further.

Like the interferometry-based and the GRB-based experiments, these ex-
periments (which have the added merit of having started the recent wave of
quantum-gravity proposals) also appear to provide significant quantum-gravity
tests. As mentioned, the effect of quantum-gravity induced decoherence certainly
qualifies as a traditional quantum-gravity subject, and the level of sensitivity
reached by the neutral-kaon studies is certainly significant (as in the case of in
vacuo dispersion and GRBs, one would like to be able to explore also the case
of a quadratic Planck-length suppression, but it is nonetheless very significant
that we have at least reached the capability to test the case of linear suppres-
sion). Also in this case it is natural to ask: how come we could manage this?
What strategy allowed this neutral-kaon studies to evade the traditional gloomy
forecasts for quantum-gravity phenomenology? While, as discussed above, in the
interferometry-based and the GRB-based experiments the crucial element in the
experimental proposal is the possibility to put together many quantum gravity
effects, in the case of the neutral-kaon experiments the crucial element in the
experimental proposal is provided by the very delicate balance of scales that
characterizes the neutral-kaon system. In particular, it just happens to be true
that the dimensionless ratio setting the order of magnitude of quantum-gravity
effects in the linear suppression scenario, which is c2ML,S/Ep ∼ 2 · 10−19, is not
much smaller than some of the dimensionless ratios characterizing the neutral-
kaon system, notably the ratio |ML − MS |/ML,S ∼ 7 · 10−15 and the ratio
|ΓL − ΓS |/ML,S ∼ 1.4 · 10−14. This renders possible for the quantum-gravity
effects to provide observably large corrections to the physics of neutral kaons.

11 Within the quantum-gravity approach here reviewed in Subsection 10.2, which only
attempts to model certain aspects of quantum gravity, such a direct calculation might
soon be performed.
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6.2 Interferometry and string cosmology

Up to this point I have only reviewed experiments probing foamy properties of
space-time in the sense of Wheeler and Hawking. A different type of quantum-
gravity effect which might produce a signature strong enough for experimental
testing has been discussed in the context of studies of a cosmology based on criti-
cal superstrings [76]. While for a description of this cosmology and of its physical
signatures I must only refer the reader to the recent reviews in Ref. [77], I want
to briefly discuss here the basic ingredients of the proposal [3] of interferometry-
based tests of the cosmic gravitational wave background predicted by string
cosmology.

In string cosmology the universe starts from a state of very small curva-
ture, then goes through a long phase of dilaton-driven inflation reaching nearly
Plankian energy density, and then eventually reaches the standard radiation-
dominated cosmological evolution [76,77]. The period of nearly Plankian energy
density plays a crucial role in rendering the quantum-gravity effects observable.
In fact, this example based on string cosmology is quite different from the exper-
iments I discussed earlier in these lectures also because it does not involve small
quantum-gravity effects which are somehow amplified (in the sense for exam-
ple of the amplification provided when many effects are somehow put together).
The string cosmology involves a period in which the quantum-gravity effects are
actually quite large. As clarified in Refs. [76,77] planned interferometers such as
LIGO might be able to detect the faint residual traces of these strong effects
occurred in a far past.

As mentioned, the quantum-gravity effects that, within string cosmology,
leave a trace in the gravity-wave background are not of the type that requires an
active Wheeler-Hawking foam. The relevant quantum-gravity effects live in the
more familiar vacuum which we are used to encounter in the context of ordinary
gauge theory. (Actually, for the purposes of the analyses reported in Refs. [76,77]
quantum gravity could be seen as an ordinary gauge theory, although with un-
usual gauge-field content.) In the case of the Wheeler-Hawking foam one is
tempted to visualize the vacuum as reboiling with (virtual) worm-holes and
black-holes. Instead the effects relevant for the gravity-wave background pre-
dicted by string cosmology are more conventional field-theory-type fluctuations,
although carrying gravitational degrees of freedom, like the graviton. Also from
this point of view the experimental proposal discussed in Refs. [76,77] probes
a set of candidate quantum-gravity phenomena which is complementary to the
ones I have reviewed earlier in these notes.

6.3 Matter interferometry and primary state diffusion

The studies reported in Ref. [4] (and references therein) have considered how
certain effectively stochastic properties of space-time would affect the evolution
of quantum-mechanical states. The stochastic properties there considered are
different from the ones discussed here in Sections 2, 3 and 4, but were introduced
within a similar viewpoint, i.e. stochastic processes as effective description of
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quantum space-time processes. The implications of these stochastic properties
for the evolution of quantum-mechanical states were modeled via the formalism
of “primary state diffusion”, but only rather crude models turned out to be
treatable.

The approach proposed in Ref. [4] actually puts together some of the un-
knowns of space-time foam and the specific properties of “primary state dif-
fusion”. The structure of the predicted effects cannot be simply discussed in
terms of elementary properties of space-time foam and a simple interpretation
in terms of symmetry deformations does not appear to be possible. Those effects
appear to be the net result of the whole formalism that goes into the approach.
Moreover, as also emphasized by the authors, the crudeness of the models is
such that all conclusions are to be considered as tentative at best. Still, the
analysis reported in Ref. [4] is very significant as an independent indication of
a mechanism, based on matter-interferometry experiments, that could unveil
Planck-length-suppressed effects.

6.4 Colliders and large extra dimensions

It was recently suggested [78,79] that the characteristic quantum-gravity length
scale might be given by a length scale LD much larger than the Planck length
in theories with large extra dimensions. It appears plausible that there exist
models that are consistent with presently-available experimental data and have
LD as large as the (TeV )−1 scale and (some of) the extra dimensions as large
as a millimiter [79]. In such models the smallness of the Planck length is seen
as the result of the fact that the strength of gravitation in the ordinary 3+1
space-time dimensions would be proportional to the square-root of the inverse of
the large volume of the external compactified space multiplied by an appropriate
(according to dimensional analysis) power of LD.

Several studies have been motivated by the proposal put forward in Ref. [79],
but only a small percentage of these studies considered the implications for
quantum-gravity scenarios. Among these studies the ones reported in Refs. [8,9]
are particularly significant for the objectives of these lectures, since they illus-
trate another completely different strategy for quantum-gravity experiments. It
is there observed that within the realm of the ordinary 3+1 dimensional space-
time an important consequence of the existence of large extra dimensions would
be the presence of a tower of Kaluza-Klein modes associated to the gravitons.
The weakness of the coupling between gravitons and other particles can be com-
pensated by the large number of these Kaluza-Klein modes when the experi-
mental energy resolution is much larger than the mass splitting between the
modes, which for a small number of very large extra dimensions can be a weak
requirement (e.g. for 6 millimiter-wide extra dimensions [79,8] the mass split-
ting is of a few MeV ). This can lead to observably large [8,9] effects at planned
particle-physics colliders, particularly CERN’s LHC.

In a sense, the experimental proposal put forward in Refs. [8,9] is another
example of experiment in which the smallness of quantum gravity effects is com-
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pensated by putting together a large number of such effects (putting together
the contributions of all of the Kaluza-Klein modes).

Concerning the quantum-gravity aspects of the models with large extra di-
mensions proposed in Ref. [79], it is important to realize that, as emphasized
in Ref. [24], if anything like the space-time foam here described in Sections 2,
3, 4 and 5 was present in such models the effective reduction of the quantum-
gravity scale would naturally lead to foamy effects that are too large for consis-
tency with available experimental data. Preliminary estimates based solely on
dimensional considerations appear to suggest that [24] linear suppression by the
reduced quantum-gravity scale would certainly be ruled out and even quadratic
suppression might not be sufficient for consistency with available data. These ar-
guments should lead to rather stringent bounds on space-time foam especially in
those models in which some of the large extra dimensions are accessible to non-
gravitational particles (see, e.g., Ref. [80]), and should have interesting (although
smaller) implications also for the popular scenario in which only the gravitational
degrees of freedom have access to the large extra dimensions. Of course, a final
verdict must await detailed calculations analysing space-time foam in these mod-
els with large extra dimensions. The first examples of this type of computations
are given by the very recent studies in Refs. [81,82], which considered the impli-
cations of foam-induced light-cone deformation for certain examples of models
with large extra dimensions.

7 Classical-space-time-induced quantum phases
in matter interferometry

While of course the quantum properties of space-time are the most exciting
effects we expect of quantum gravity, and probably the ones which will prove
most useful in gaining insight into the fundamental structure of the theory, it
is important to investigate experimentally all aspects of the interplay between
gravitation and quantum mechanics. Among these experiments the ones that
could be expected to provide fewer surprises (and less insight into the structure
of quantum gravity) are the ones concerning the interplay between strong-but-
classical gravitational fields and quantum matter fields. However, this is not
necessarily true as I shall try to clarify within this section’s brief review of the
experiment performed nearly a quarter of a century ago by Colella, Overhauser
and Werner [10], which, to my knowledge, was the first experiment probing
some aspect of the interplay between gravitation and quantum mechanics. That
experiment has been followed by several modifications and refinements (often
labeled “COW experiments” from the initials of the scientists involved in the
first experiment) all probing the same basic physics, i.e. the validity of the
Schrödinger equation

[
−
(

~
2

2MI

)
∇2 +MG φ(r)

]
ψ(t, r) = i ~

∂ ψ(t, r)

∂t
(16)
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for the description of the dynamics of matter (with wave function ψ(t, r)) in
presence of the Earth’s gravitational potential φ(r). [In (16) MI and MG denote
the inertial and gravitational mass respectively.]

The COW experiments exploit the fact that the Earth’s gravitational poten-
tial puts together the contribution of so many particles (all of those composing
the Earth) that it ends up being large enough to introduce observable effects
in rotating table-top interferometers. This was the first example of a physi-
cal context in which gravitation was shown to have an observable effect on a
quantum-mechanical system in spite of the weakness of the gravitational force.

The fact that the original experiment performed by Colella, Overhauser and
Werner obtained results in very good agreement [10] with Eq. (16) might seem
to indicate that, as generally expected, experiments on the interplay between
strong-but-classical gravitational fields and quantum matter fields should not
lead to surprises and should not provide insight into the structure of quantum
gravity. However, the confirmation of Eq. (16) does raise some sort of a puzzle
with respect to the Equivalence Principle of general relativity; in fact, even for
MI = MG the mass does not cancel out in the quantum evolution equation (16).
This is an observation that by now has also been emphasized in textbooks [83],
but to my knowledge it has not been fully addressed even within the most pop-
ular quantum-gravity approaches, i.e. critical superstrings and canonical/loop
quantum gravity. Which role should be played by the Equivalence Principle
in quantum gravity? Which version/formulation of the Equivalence Principle
should/could hold in quantum gravity?

Additional elements for consideration in quantum-gravity models will emerge
if the small discrepancy between (16) and data reported in Ref. [84] (a refined
COW experiment) is confirmed by future experiments. The subject of gravi-
tationally induced quantum phases is also expanding in new directions [6,85],
which are likely to provide additional insight.

8 Estimates of space-time fuzziness
from measurability bounds

In the preceding Sections 4, 5, 6 and 7 I have discussed the experimental propos-
als that support the conclusions anticipated in Sections 2 and 3. This Section 8
and the following two sections each provide a “theoretical-physics addendum”.
In this section I discuss some arguments that appear to suggest properties of
the space-time foam. These arguments are based on analyses of bounds on the
measurability of distances in quantum gravity. The existence of measurability
bounds has attracted the interest of several theorists, because these bounds ap-
pear to capture an important novel element of quantum gravity. In ordinary
(non-gravitational) quantum mechanics there is no absolute limit on the accu-
racy of the measurement of a distance. [Ordinary quantum mechanics allows
δA = 0 for any single observable A, since it only limits the combined measura-
bility of pairs of conjugate observables.]
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The quantum-gravity bound on the measurability of distances (whatever final
form it actually takes in the correct theory) is of course intrinsically interesting,
but here (as in previous works [7,24,12,86,13]) I shall be interested in the pos-
sibility that it might reflect properties of the space-time foam. This is of course
not necessarily true: a bound on the measurability of distances is not necessar-
ily associated to space-time fluctuations, but guided by the Wheeler-Hawking
intuition on the nature of space-time one is tempted to interpret any measurabil-
ity bound (which might be obtained with totally independent arguments) as an
indicator of the type of irreducible fuzziness that characterizes space-time. One
has on one hand some intuition about quantum gravity which involves stochastic
fluctuations of distances and on the other hand some different arguments lead
to intuition for absolute bounds on the measurability of distances; it is natural
to explore the possibility that the two might be related, i.e. that the intrinsic
stochastic fluctuations should limit the measurability just to the level suggested
by the independent measurability arguments. Different arguments appear to lead
to different measurability bounds, which in turn could provide different intuition
for the stochastic properties of space-time foam.

8.1 Minimum-length noise

In many quantum-gravity approaches there appears to be a length scale Lmin,
often identified with the Planck length or the string length Lstring (which, as
mentioned, should be somewhat larger than the Planck length, plausibly in the
neighborhood of 10−34m), which sets an absolute bound on the measurability of
distances (a minimum uncertainty):

δD ≥ Lmin . (17)

This property emerges in approaches based on canonical quantization of Ein-
stein’s gravity when analyzing certain gedanken experiments (see, e.g., Refs. [30],
[33] and references therein). In critical superstring theories, theories whose me-
chanics is still governed by the laws of ordinary quantum mechanics but with
one-dimensional (rather than point-like) fundamental objects, a relation of type
(17) follows from the stringy modification of Heisenberg’s uncertainty princi-
ple [31]

δx δp≥1 + L2
string δp

2 . (18)

In fact, whereas Heisenberg’s uncertainty principle allows δx = 0 (for δp → ∞),
for all choices of δp the uncertainty relation (18) gives δx ≥ Lstring. The relation
(18) is suggested by certain analyses of string scattering [31], but it might have
to be modified when taking into account the non-perturbative solitonic struc-
tures of superstrings known as Dirichlet branes [38]. In particular, evidence has
been found [87] in support of the possibility that “Dirichlet particles” (Dirichlet
0 branes) could probe the structure of space-time down to scales shorter than
the string length. In any case, all evidence available on critical superstrings is
consistent with a relation of type (17), although it is probably safe to say that
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some more work is still needed to firmly establish the string-theory value of
Lmin.

Having clarified that a relation of type (17) is a rather common prediction of
theoretical work on quantum gravity, it is then natural to wonder whether such
a relation is suggestive of stochastic distance fluctuations of a type that could
significantly affect the noise levels of an interferometer. As mentioned relations
such as (17) do not necessarily encode any fuzziness; for example, relation (17)
could simply emerge from a theory based on a lattice of points with spacing Lmin
and equipped with a measurement theory consistent with (17). The concept
of distance in such a theory would not necessarily be affected by the type of
stochastic processes that lead to noise in an interferometer. However, if one
does take as guidance the Wheeler-Hawking intuition on space-time foam it
makes sense to assume that relation (17) might encode the net effect of some
underlying physical processes of the type one would qualify as quantum space-
time fluctuations. This (however preliminary) network of intuitions suggests that
(17) could be the result of fuzziness for distances D of the type associated to
stochastic fluctuations with root-mean-square deviation σD given by

σD ∼ Lmin . (19)

The associated displacement amplitude spectral density Smin(f) should roughly
have a 1/

√
f behaviour

Smin(f) ∼
Lmin√

f
, (20)

which (using notation set up in Section 4) can be concisely described stating
that Lmin ∼ Lβ=1/2. Eq. (20) can be justified using the general relation (4).
Substituting the Smin(f) of Eq. (20) for the S(f) of Eq. (4) one obtains a σ
that approximates the σD of Eq. (19) up to small (logarithmic) Tobs-dependent
corrections. A more detailed description of the displacement amplitude spectral
density associated to Eq. (19) can be found in Refs. [88,89]. For the objectives
of these lectures the rough estimate (20) is sufficient since, if indeed Lmin ∼ Lp,
from (20) one obtains Smin(f) ∼ 10−35m/

√
f , which is still very far from the

sensitivity of even the most advanced modern interferometers, and therefore I
shall not be concerned with corrections to Eq. (20).

8.2 Random-walk noise motivated by the analysis
of a Salecker-Wigner gedanken experiment

Let me now consider a measurability bound which is encountered when tak-
ing into account the quantum properties of devices. It is well understood (see,
e.g., Refs. [12,13,90,44,45,32]) that the combination of the gravitational proper-
ties and the quantum properties of devices can have an important role in the
analysis of the operative definition of gravitational observables. Since the anal-
yses [30,33,31,87] that led to the proposal of Eq. (17) only treated the devices
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in a completely idealized manner (assuming that one could ignore any contribu-
tion to the uncertainty in the measurement of D due to the gravitational and
quantum properties of devices), it is not surprising that analyses taking into ac-
count the gravitational and quantum properties of devices found more significant
limitations to the measurability of distances.

Actually, by ignoring the way in which the gravitational properties and the
quantum properties of devices combine in measurements of geometry-related
physical properties of a system one misses some of the fundamental elements
of novelty we should expect for the interplay of gravitation and quantum me-
chanics; in fact, one would be missing an element of novelty which is deeply
associated to the Equivalence Principle. In measurements of physical properties
which are not geometry-related one can safely resort to an idealized description
of devices. For example, in the famous Bohr-Rosenfeld analysis [91] of the mea-
surability of the electromagnetic field it was shown that the accuracy allowed
by the formalism of ordinary quantum mechanics could only be achieved using
idealized test particles with vanishing ratio between electric charge and inertial
mass. Attempts to generalize the Bohr-Rosenfeld analysis to the study of grav-
itational fields (see, e.g., Ref. [90]) are of course confronted with the fact that
the ratio between gravitational “charge” (mass) and inertial mass is fixed by the
Equivalence Principle. While ideal devices with vanishing ratio between electric
charge and inertial mass can be considered at least in principle, devices with van-
ishing ratio between gravitational mass and inertial mass are not admissible in
any (however formal) limit of the laws of gravitation. This observation provides
one of the strongest elements in support of the idea [13] that the mechanics on
which quantum gravity is based must not be exactly the one of ordinary quantum
mechanics, since it should accommodate a somewhat different relationship be-
tween “system” and “measuring apparatus” and should not rely on the idealized
“measuring apparatus” which plays such a central role in the mechanics laws of
ordinary quantum mechanics (see, e.g., the “Copenhagen interpretation”).

In trying to develop some intuition for the type of fuzziness that could affect
the concept of distance in quantum gravity, it might be useful to consider the
way in which the interplay between the gravitational and the quantum prop-
erties of devices affects the measurability of distances. In Refs. [12,13] I have
argued12 that a natural starting point for this type of analysis is provided by
the procedure for the measurement of distances which was discussed in influential
work by Salecker and Wigner [92]. These authors “measured” (in the “gedanken”
sense) the distance D between two bodies by exchanging a light signal between
them. The measurement procedure requires attaching13 a light-gun (i.e. a de-

12 I shall comment later in these notes on the measurability analysis reported in
Ref. [45], which also took as starting point the mentioned work by Salecker and
Wigner, but advocated a different viewpoint and reached different conclusions.

13 Of course, for consistency with causality, in such contexts one assumes devices to be
“attached non-rigidly,” and, in particular, the relative position and velocity of their
centers of mass continue to satisfy the standard uncertainty relations of quantum
mechanics.
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vice capable of sending a light signal when triggered), a detector and a clock to
one of the two bodies and attaching a mirror to the other body. By measuring
the time Tobs (time of observation) needed by the light signal for a two-way
journey between the bodies one also obtains a measurement of the distance D.
For example, in flat space and neglecting quantum effects one simply finds that
D = cTobs/2. Within this setup it is easy to realize that the interplay between
the gravitational and the quantum properties of devices leads to an irreducible
contribution to the uncertainty δD. In order to see this it is sufficient to consider
the contribution to δD coming from the uncertainties that affect the motion of
the center of mass of the system composed by the light-gun, the detector and
the clock. Denoting with x∗ and v∗ the position and the velocity of the center of
mass of this composite device relative to the position of the body to which it is
attached, and assuming that the experimentalists prepare this device in a state
characterised by uncertainties δx∗ and δv∗, one easily finds [92,13]

δD ≥ δx∗ + Tobsδv
∗ ≥ δx∗ +

(
1

Mb
+

1

Md

)
~Tobs
2 δx∗ ≥

√
~Tobs
2

1

Md
, (21)

where Mb is the mass of the body, Md is the total mass of the device composed
of the light-gun, the detector, and the clock, and I also used the fact that Heisen-
berg’s Uncertainty Principle implies δx∗δv∗ ≥ (1/Mb + 1/Md)~/2. [The reduced
mass (1/Mb + 1/Md)

−1 is relevant for the relative motion.] Clearly, from (21)
it follows that in order to reduce the contribution to the uncertainty coming
from the quantum properties of the devices it is necessary to take the formal
“classical-device limit,” i.e. the limit14 of infinitely large Md.

Up to this point I have not yet taken into account the gravitational prop-
erties of the devices and in fact the “classical-device limit” encountered above
is fully consistent with the laws of ordinary quantum mechanics. From a phys-
ical/phenomenological and conceptual viewpoint it is well understood that the
formalism of quantum mechanics is only appropriate for the description of the
results of measurements performed by classical devices. It is therefore not sur-
prising that the classical-device (infinite-mass) limit turns out to be required in
order to match the prediction minδD = 0 of ordinary quantum mechanics.

If one also takes into account the gravitational properties of the devices,
a conflict with ordinary quantum mechanics immediately arises because the

14 A rigorous definition of a “classical device” is beyond the scope of these notes. How-
ever, it should be emphasized that the experimental setups being here considered
require the devices to be accurately positioned during the time needed for the mea-
surement, and therefore an ideal/classical device should be infinitely massive so that
the experimentalists can prepare it in a state with δx δv ∼ ~/M ∼ 0. It is the fact
that the infinite-mass limit is not accessible in a gravitational context that forces
one to consider only “non-classical devices.” This observation is not inconsistent
with conventional analyses of decoherence for macroscopic systems; in fact, in ap-
propriate environments, the behavior of a macroscopic device will still be “closer to
classical” than the behavior of a microscopic device, although the limit in which a
device has exactly classical behavior is no longer accessible.
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classical-device (infinite-mass) limit is in principle inadmissible for measurements
concerning gravitational effects.15 As the devices get more and more massive
they increasingly disturb the gravitational/geometrical observables, and well
before reaching the infinite-mass limit the procedures for the measurement of
gravitational observables cannot be meaningfully performed [12,13,45]. In the
Salecker-Wigner measurement procedure the limit Md → ∞ is not admissible
when gravitational interactions are taken into account. At the very least the
value of Md is limited by the requirement that the apparatus should not turn
into a black hole (which would not allow the exchange of signals required by the
measurement procedure).

These observations render unavoidable the
√
Tobs-dependence of Eq. (21). It

is important to realize that this
√
Tobs-dependence of the bound of the measura-

bility of distances comes simply from combining elements of quantum mechanics
with elements of classical gravity. As it stands it is not to be interpreted as
a quantum-gravity effect. However, as clarified in the opening of this section,
if one is interested in modeling properties of the space-time foam it is natural
to explore the possibility that the foam be such that distances be affected by
stochastic fluctuations with this typical

√
Tobs-dependence. The logic is here the

one of observing that stochastic fluctuations associated to the foam would any-
way lead to some form of dependence on Tobs and in guessing the specific form
of this dependence the measurability analysis reviewed in this subsection can be
seen as providing motivation for a

√
Tobs-dependence. From this point of view

the measurability analysis reviewed in this subsection provides additional mo-
tivation for the study of random-walk-type models of distance fuzziness, whose
fundamental stochastic fluctuations are characterized (as already discussed in
Section 4) by root-mean-square deviation σD given by16

σD ∼
√

LQG c Tobs (22)

15 This conflict between the infinite-mass classical-device limit (which is implicit in the
applications of the formalism of ordinary quantummechanics to the description of the
outcome of experiments) and the nature of gravitational interactions has not been
addressed within any of the most popular quantum gravity approaches, including
critical superstrings [38,39] and canonical/loop quantum gravity [40]. In a sense
somewhat similar to the one appropriate for Hawking’s work on black holes [93], this
“classical-device paradox” appears to provide an obstruction [13] for the use of the
ordinary formalism of quantum mechanics for a description of quantum gravity.

16 As discussed in Refs. [12,13,24], this form of σD also implies that in quantum grav-
ity any measurement that monitors a distance D for a time Tobs is affected by
an uncertainty δD ≥ pLQG c Tobs. This must be seen as a minimum uncertainty
that takes only into account the quantum and gravitational properties of the mea-
suring apparatus. Of course, an even tighter bound can emerge when taking into
account also the quantum and gravitational properties of the system under obser-
vation. According to the estimates provided in Refs. [30,33] the contribution to the
uncertainty coming from the system is of the type δD ≥ Lp, so that the total contri-
bution (summing the system and the apparatus contributions) might be of the type
δD ≥ Lp +

p
LQG c Tobs.
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and by displacement amplitude spectral density S(f) given by

S(f) = f−1
√

LQG c . (23)

Here the scale LQG plays exactly the same role as in Section 4 (in particular
LQG ≡ Lβ=1 in the sense of Section 4). However, seeing LQG as the result of
Planck-length fluctuations occurring at a rate of one per Planck time immedi-
ately leads us to LQG ∼ Lp, whereas the different intuition which has gone into
the emergence of LQG in this subsection leaves room for different predictions.
As already emphasized, by mixing elements of quantum mechanics and elements
of gravitation one can only conclude that there must be some

√
Tobs-dependent

irreducible contribution to the uncertainty in the measurement of distances. One
can then guess that space-time foam might reflect this

√
Tobs-dependence and one

can parametrize our ignorance by introducing LQG in the formula
√

LQG c Tobs.
Within such an argument the estimate LQG ∼ Lp could only be motivated on
dimensional grounds (Lp is the only length scale available), but there is no di-
rect estimate of LQG within the argument advocated in this subsection. We only
have (in the specific sense intended above) a lower limit on LQG which is set
by the bare analysis using straightforward combination of elements of ordinary
quantum mechanics and elements of ordinary gravity. As seen above, this lower
limit on LQG is set by the minimum allowed value of 1/Md. Our intuition for
LQG might benefit from trying to establish this minimum allowed value of 1/Md.
As mentioned, a conservative (possibly very conservative) estimate of this min-
imum value can be obtained by enforcing that Md be at least sufficiently small
to avoid black hole formation. In leading order (e.g., assuming corresponding
spherical symmetries) this amounts to the requirement that Md < ~Sd/(cL

2
p),

where the length Sd characterizes the size of the region of space where the matter
distribution associated to Md is localized. This observation implies

1

Md
>

cL2
p

~

1

Sd
, (24)

which in turn suggests [12] that LQG ∼ min[L2
p/Sd]:

δD ≥ min

√
1

Sd

L2
p c Tobs

2
. (25)

Of course, this estimate is very preliminary since a full quantum gravity would
be needed here; in particular, the way in which black holes were handled in my
argument might have missed important properties which would become clear
only once we have the correct theory. However, it is nevertheless striking to ob-
serve that the guess LQG ∼ Lp appears to be very high with respect to the lower
limit on LQG which we are finding from this estimate; in fact, LQG ∼ Lp would
correspond to the maximum admissible value of Sd being of order Lp. Since my
analysis only holds for devices that can be treated as approximately rigid17 and
17 The fact that I have included only one contribution from the quantum properties of

the devices, the one associated to the quantum properties of the motion of the center
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any non-rigidity could introduce additional contributions to the uncertainties,
it is reasonable to assume that max[Sd] be some small length (small enough
that any non-rigidity would negligibly affect the measurement procedure), but
it appears unlikely that max[Sd] ∼ Lp. This observation might provide some
encouragement for values of LQG smaller than Lp, which after all is the only
way to obtain random-walk models consistent with the data analysis reported
in Refs. [7,24].

Later in this section I will consider a particular class of estimates formax[Sd]:
if the correct quantum gravity is such that something like (25) holds but with
max[Sd] that depends on δD, one would have a different Tobs-dependence (and
corresponding f -dependence), as I shall show in one example.

8.3 Random-walk noise motivated by linear deformation
of dispersion relation

Besides the analysis of the Salecker-Wigner measurement procedure also the
mentioned possibility of quantum-gravity-induced deformation of dispersion re-
lations [5,46,41,21,27] would be consistent with the idea of random-walk distance
fuzziness. The sense in which this is true is clarified by the arguments that follow.

Let me start by going back to the general relation (already discussed in
Section 2):

c2p2 � E2

[
1 + ξ

(
E

EQG

)α]
. (26)

Scenarios (26) with α = 1 are consistent with random-walk noise, in the sense
that an experiment involving as a device (as a probe) a massless particle satis-
fying the dispersion relation (26) with α = 1 would be naturally affected by a
device-induced uncertainty that grows with

√
Tobs. From the deformed dispersion

of mass, implicitly relies on the assumption that the devices and the bodies can be
treated as approximately rigid. Any non-rigidity of the devices could introduce addi-
tional contributions to the uncertainty in the measurement of D. This is particularly
clear in the case of detector screens and mirrors, whose shape plays a central role
in data analysis. Uncertainties in the shape (the relative position of different small
parts) of a detector screen or of a mirror would lead to uncertainties in the mea-
sured quantity. For large devices some level of non-rigidity appears to be inevitable
in quantum gravity. Causality alone (without any quantum mechanics) forbids rigid
attachment of two bodies (e.g., two small parts of a device), but is still consistent
with rigid motion (bodies are not really attached but because of fine-tuned initial
conditions their relative position and relative orientation are constants of motion).
When Heisenberg’s Uncertainty Principle is introduced rigid motion becomes pos-
sible only for bodies of infinite mass, whose trajectories can still be deterministic
because of δx δv ∼ ~/M ∼ 0. Rigid devices are still available in ordinary quantum
mechanics but they are peculiar devices, with infinite mass. When both gravitation
and quantum mechanics are introduced rigid devices are no longer available since
the infinite-mass limit is then inconsistent with the nature of gravitational devices.
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relation (26) one is led to energy-dependent velocities [24]

v � c

[
1−

(
1 + α

2

)
ξ

(
E

EQG

)α]
, (27)

and consequently when a time Tobs has lapsed from the moment in which the
observer (experimentalist) set off the measurement procedure the uncertainty in
the position of the massless probe is given by

δx � c δt+ δv Tobs � c δt+
1 + α

2
α
Eα−1 δE

Eα
QG

c Tobs , (28)

where δt is the quantum uncertainty in the time of emission of the probe, δv
is the quantum uncertainty in the velocity of the probe, δE is the quantum
uncertainty in the energy of the probe, and I used the relation between δv and δE
that follows from (27). Since the quantum uncertainty in the time of emission of
a particle and the quantum uncertainty in its energy are related18 by δt δE ≥ ~,
Eq. (28) can be turned into an absolute bound on the uncertainty in the position
of the massless probe when a time Tobs has lapsed from the moment in which
the observer set off the measurement procedure [24]

δx ≥ c
~

δE
+

1 + α

2
α
Eα−1 δE

Eα
QG

Tobs ≥

√(
α+ α2

2

)(
E

EQG

)α−1
c2~Tobs
EQG

. (29)

For α = 1 the E-dependence on the right-hand side of Eq. (29) disappears
and one is led again to a δx of the type (constant) ·

√
Tobs:

δx ≥
√

c2~Tobs
EQG

. (30)

When massless probes are used in the measurement of a distance D, as in the
Salecker-Wigner measurement procedure, the uncertainty (30) in the position of
the probe translates directly into an uncertainty on D:

δD ≥
√

c2~Tobs
EQG

. (31)

This was already observed in Refs. [46,23,27] which considered the implications
of deformed dispersion relations (26) with α = 1 for the Salecker-Wigner mea-
surement procedure.
18 It is well understood that the δt δE ≥ ~ relation is valid only in a weaker sense than,

say, Heisenberg’s Uncertainty Principle δx δp ≥ ~. This has its roots in the fact
that the time appearing in quantum-mechanics equations is just a parameter (not
an operator), and in general there is no self-adjoint operator canonically conjugate
to the total energy, if the energy spectrum is bounded from below [94,53]. However,
the δt δE ≥ ~ relation does relate δt intended as quantum uncertainty in the time
of emission of a particle and δE intended as quantum uncertainty in the energy of
that same particle.
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Since deformed dispersion relations (26) with α = 1 have led us to the same
measurability bound already encountered both in the analysis of the Salecker-
Wigner measurement procedure and the analysis of simple-minded random-walk
models of quantum space-time fluctuations, if we assume again that such mea-
surability bounds emerge in a full quantum gravity as a result of corresponding
quantum fluctuations (fuzziness), we are led once again to random-walk noise:

σD ∼
√

c2~Tobs
EQG

. (32)

8.4 Noise motivated by quadratic deformation of dispersion relation

In the preceding subsection I observed that quantum-gravity deformed dispersion
relations (26) with α = 1 can also motivate random-walk noise σD ∼ (constant) ·√
Tobs. If we use the same line of reasoning that connects a measurability bound

to a scenario for fuzziness when α �= 1 we appear to find σD ∼ G(E/EQG)·
√
Tobs,

where G(E/EQG) is a (α-dependent) function of E/EQG. However, in these
cases with α �= 1 clearly the connection between measurability bound and fuzzy-
distance scenario cannot be this simple; in fact, the energy of the probe E which
naturally plays a role in the context of the derivation of the measurability bound
does not have a natural counter-part in the context of the conjectured fuzzy-
distance scenario.

In order to preserve the conjectured connection between measurability bounds
and fuzzy-distance scenarios one can be tempted to envision that if α �= 1 the in-
terferometer noise levels induced by space-time fuzziness might be of the type [24]

σD ∼

√(
α+ α2

2

)(
E∗

EQG

)α−1
c2~Tobs
EQG

, (33)

where E∗ is some energy scale characterizing the physical context under consid-
eration. [For example, at the intuitive level one might conjecture that E∗ could
characterize some sort of energy density associated with quantum fluctuations
of space-time or an energy scale associated with the masses of the devices used
in the measurement process.]

Since α ≥ 1 in all Quantum-Gravity approaches believed to support deformed
dispersion relations it appears likely that the factor (E∗/EQG)

α−1 would sup-
press the random-walk noise effect in all contexts with E∗ < EQG. Besides the
case α = 1 (linear deformation) also the case α = 2 (quadratic deformation)
deserves special interest since it can emerge quite naturally in quantum-gravity
approaches (see, e.g., Ref. [22]).

8.5 Noise with f�5=6 amplitude spectral density

In Subsection 8.2 a bound on the measurability of distances based on the Salecker-
Wigner procedure was used as motivation for experimental tests of interferometer
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noise of random-walk type, with f−1 amplitude spectral density and
√
Tobs root-

mean-square deviation. In this subsection I shall pursue further the observation
that the relevant measurability bound could be derived by simply insisting that
the devices do not turn into black holes. That observation allowed to derive
Eq. (25), which expresses the minimum uncertainty δD on the measurement of
a distance D (i.e. the measurability bound for D) as proportional to

√
Tobs and√

1/Sd. Within that derivation the minimum uncertainty is obtained in corre-
spondence of max[Sd], the maximum value of Sd consistent with the structure of
the measurement procedure. I was therefore led to consider how large Sd could
be while still allowing to disregard any non-rigidity in the quantum motion of
the device (which would introduce additional contributions to the uncertainties).
Something suggestive of the random-walk noise scenario emerged by simply as-
suming that max[Sd] be independent of the accuracy δD that the observer would
wish to achieve. However, as mentioned, the same physical intuition that moti-
vates some of the fuzzy space-time scenarios here considered also suggests that
quantum gravity might require a novel measurement theory, possibly involving
a new type of relation between system and measuring apparatus. Based on this
intuition, it seems reasonable to contemplate the possibility that max[Sd] might
actually depend on δD.

It is such a scenario that I want to consider in this subsection. In particular
I want to consider the case max[Sd] ∼ δD, which, besides being simple, has
the plausible property that it allows only small devices if the uncertainty to be
achieved is small, while it would allow correspondingly larger devices if the ob-
server was content with a larger uncertainty. This is also consistent with the idea
that elements of non-rigidity in the quantum motion of extended devices could
be neglected if anyway the measurement is not aiming for great accuracy, while
they might even lead to the most significant contributions to the uncertainty if
all other sources of uncertainty are very small. [Salecker and Wigner [92] would
also argue that “large” devices are not suitable for very accurate space-time
measurements (they end up being “in the way” of the measurement procedure)
while they might be admissible if space-time is being probed rather softly.]

In this scenario with max[Sd] ∼ δD, Eq. (25) takes the form

δD ≥

√
1

Sd

L2
p c Tobs

2
≥

√
L2
p c Tobs

2 δD
, (34)

which actually gives

δD ≥
(
1

2
L2
p c Tobs

)1/3

. (35)

As done with the other measurability bounds, I have proposed [7,24] to take
Eq. (35) as motivation for the investigation of a corresponding fuzziness scenario
characterised by

σD ∼
(
L̃2
QG c Tobs

)1/3

. (36)
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Notice that in this equation I replaced Lp with a generic length scale L̃QG, since
it is possible that the heuristic argument leading to Eq. (36) might have captured
the qualitative structure of the phenomenon while providing an incorrect esti-
mate of the relevant length scale. Also notice that Eq. (35) has the same form as
the relations emerged in other measurability analyses [45,43], even though those
analyses adopted a very different viewpoint (and even the physical role of the
elements of Eq. (35) was different, as explained in the next section).

As observed in Refs. [7,24] the T
1/3
obs dependence of σD is associated with

displacement amplitude spectral density with f−5/6 behaviour:

S(f) = f−5/6(L̃2
QG c)1/3 . (37)

Therefore the measurability analyses discussed in this subsection provides mo-
tivation for the investigation of the case β = 5/6 (using again the notation set
up in Section 4).

9 Relations with other quantum gravity approaches

In this section I comment on the connections and the differences between some
of the ideas which I reviewed in these notes and other quantum-gravity ideas.

9.1 Canonical Quantum Gravity

One of the most popular quantum-gravity approaches is the one in which the
ordinary canonical formalism of quantum mechanics is applied to (some formu-
lation of) Einstein’s Gravity. Especially in light of the fact that [13] some of
the observations reviewed in the previous sections suggest that quantum gravity
should require a new mechanics, not exactly given by ordinary quantum mechan-
ics, it is very interesting that some of the phenomena considered in the previous
sections have also emerged in studies of canonical quantum gravity.

As mentioned, the most direct connection was found in the study reported in
Ref. [41], which was motivated by Ref. [5]. In fact, Ref. [41] shows that the pop-
ular canonical/loop quantum gravity [40] admits the phenomenon of deformed
dispersion relations, with the deformation going linearly with the Planck length.

Concerning the bounds on the measurability of distances it is probably fair
to say that the situation in canonical/loop quantum gravity is not yet clear be-
cause the present formulations do not appear to lead to a compelling candidate
“length operator.” This author would like to interpret the problems associated
with the length operator as an indication that perhaps something unexpected
might actually emerge in canonical/loop quantum gravity as a length operator,
possibly something with properties fitting the intuition of some of the scenar-
ios for fuzzy distances which I reviewed. Actually, the random-walk space-time
fuzziness model might have a (somewhat weak, but intriguing) connection with
“quantum mechanics applied to gravity” at least to the level seen by comparison
with the scenario discussed in Ref. [95], which was motivated by the intuition
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that is emerging from investigations of canonical/loop quantum gravity. The
“moves” of Ref. [95] share many of the properties of the “random steps” of the
random-walk models.

9.2 Critical and non-critical string theories

Unfortunately, in the popular quantum-gravity approach based on critical super-
strings19 not many results have been derived concerning directly the quantum
properties of space-time. Perhaps the most noticeable such results are the ones on
limitations on the measurability of distances emerged in the scattering analyses
reported in Refs. [31,87], which I already mentioned.

A rather different picture is emerging (through the difficulties of this rich
formalism) in Liouville (non-critical) strings [19], whose development was partly
motivated by intuition concerning the quantum-gravity vacuum that is rather
close to the one traditionally associated to the mentioned works of Wheeler
and Hawking. Evidence has been found [46] in Liouville strings supporting the
validity of deformed dispersion relations, with the deformation going linearly
with the Planck/string length. In the sense clarified in Section 8.3 this approach
might also host a bound on the measurability of distances which grows with√
Tobs.

9.3 Other types of measurement analyses

Because of the lack of experimental input, it is not surprising that many authors
have been seeking some intuition on quantum gravity by formal analyses of the
ways in which the interplay between gravitation and quantum mechanics could
affect measurement procedures. A large portion of these analyses produced a
“min[δD]” with D denoting a distance; however, the same type of notation was
used for structures defined in significantly different ways. Also different mean-
ings have been given by different authors to the statement “absolute bound on
the measurability of an observable.” Quite important for the topics here dis-
cussed are the differences (which might not be totally transparent as a result of
this unfortunate choice of overlapping notations) between the approach advo-
cated in Refs. [7,12,13,24] and the approaches advocated in Refs. [92,44,45,43]. In
Refs. [7,12,13,24] “min[δD]” denotes an absolute limitation on the measurabil-
ity of a distance D. The studies [92,44,43] analyzed the interplay of gravity and
quantum mechanics in defining a net of time-like geodesics, and in those stud-
ies “min[δD]” characterizes the maximum “tightness” achievable for the net
of time-like geodesics. Moreover, in Refs. [92,44,45,43] it was required that the
measurement procedure should not affect/modify the geometric observable be-
ing measured, and “absolute bounds on the measurability” were obtained in this

19 As already mentioned the mechanics of critical superstrings is just an ordinary quan-
tum mechanics. All of the new structures emerging in this exciting formalism are the
result of applying ordinary quantum mechanics to the dynamics of extended funda-
mental objects, rather than point-like objects (particles).
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specific sense. Instead, in Refs. [12,13,24] it was envisioned that the observable
which is being measured might depend also on the devices (the underlying view
is that observables in quantum gravity would always be, in a sense, shared prop-
erties of “system” and “apparatus”), and it was only required that the nature of
the devices be consistent with the various stages of the measurement procedure
(for example if a device turned into a black-hole some of the exchanges of signals
needed for the measurement would be impossible). The measurability bounds of
Refs. [12,13,24] are therefore to be intended from this more fundamental per-
spective, and this is crucial for the possibility that these measurability bounds be
associated to a fundamental quantum-gravity mechanism for “fuzziness” (quan-
tum fluctuations of space-time). The analyses reported in Refs. [92,44,45,43] did
not include any reference to fuzzy space-times of the type operatively defined in
terms of stochastic processes, as reviewed in Section 4.

The more fundamental nature of the bounds obtained in Refs. [12,13,24] is
also crucial for the arguments suggesting that quantum gravity might require a
new mechanics, not exactly given by ordinary quantum mechanics. The analyses
reported in Refs. [92,44,45,43] did not include any reference to this possibility.

Having clarified that there is a “double difference” (different “min” and dif-
ferent “δD”) between the meaning of min[δD] adopted in Refs. [7,12,13,24] and
the meaning of min[δD] adopted in Refs. [92,44,45,43], it is however important
to notice that the studies reported in Refs. [44,45,43] were among the first studies
which showed how in some aspects of measurement analysis the Planck length
might appear together with other length scales in the problem. For example, a
quantum gravity effect naturally involving something of length-squared dimen-
sions might not necessarily go like L2

p: in some cases it could go like ΛLp, with
Λ some other length scale in the problem.

Interestingly, the analysis of the interplay of gravity and quantum mechanics
in defining a net of time-like geodesics reported in Ref. [44] concluded that the
maximum “tightness” achievable for the geodesics would be characterized by√

L2
pR

−1s, where R is the radius of the (spherically symmetric) clocks whose

world lines define the network of geodesics, and s is the characteristic distance

scale over which one is intending to define such a network. The
√

L2
pR

−1s max-

imum tightness discussed in Ref. [44] is formally analogous to Eq. (25), but, as
clarified above, this “maximum tightness” was defined in a very different (“dou-
bly different”) way, and therefore the two proposals have completely different
physical implications. Actually, in Ref. [44] it was also stated that for a single
geodesic distance (which might be closer to the type of distance measurability
analysis reported in Refs. [12,13,24]) one could achieve accuracy significantly

better than the formula
√

L2
pR

−1s, which was interpreted in Ref. [44] as a direct

result of the structure of a network of geodesics.

Relations of the type min[δD] ∼ (L2
pD)(1/3), which are formally analogous

to Eq. (35), were encountered in the analysis of maximum tightness achievable
for a geodesics network reported in Ref. [43] and in the analysis of measurability
of distances reported in Ref. [45]. Although once again the definitions of “min”
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and “δD” used in these studies are completely different from the ones relevant
for the “min[δD]” of Eq. (35).

10 Quantum gravity, no strings attached

Some of the arguments reviewed in these lecture notes appear to suggest that
quantum gravity might require a mechanics not exactly of the type of ordinary
quantum mechanics. In particular, the new mechanics might have to accommo-
date a somewhat different relationship (in a sense, “more democratic”) between
“system” and “measuring apparatus”, and should take into account the fact
that the limit in which the apparatus behaves classically is not accessible once
gravitation is turned on. The fact that the most popular quantum-gravity ap-
proaches, including critical superstrings and canonical/loop quantum gravity,
are based on ordinary quantum mechanics but seem inconsistent with the cor-
respondence between formalism and measurability bounds of the type sought
and found in non-gravitational quantum mechanics (through the work of Bohr,
Rosenfeld, Landau, Peierls, Einstein, Salecker, Wigner and many others), repre-
sents, in this author’s humble opinion, one of the outstanding problems of these
approaches. Still, it is of great importance for quantum-gravity research that
these approaches continue to be pursued very aggressively: they might eventu-
ally encounter along their development unforeseeable answers to these questions
or else, as they are “pushed to the limit”, they might turn out to fail in a way
that provides insight on the correct theory. However, the observations pointing
us toward deviations from ordinary quantum-mechanics could provide motiva-
tion for the parallel development of alternative quantum-gravity approaches. But
how could we envision quantum gravity with no strings (or“canonical loops”)
attached? More properly, how can we devise a new mechanics when we have no
direct experimental data on its structure? Classical mechanics was abandoned
for quantum mechanics only after a relatively long period of analysis of physical
problems such as black-body spectrum and photoelectric effect which contained
very relevant information. We don’t seem to have any such insightful physical
problem. At best we might have identified the type of conceptual shortfall which
Mach had discussed with respect to Newtonian gravity. It is amusing to no-
tice that the analogy with Machian conceptual analyses might actually be quite
proper, since at the beginning of this century we were invited to renounce to the
comfort of the reference to “fixed stars” and now that we are reaching the end
of this century we might be forced to renounce to the comfort of an idealized
classical measuring apparatus.

Our task is that much harder in light of the fact that (unless something like
large extra dimensions is verified in Nature) we must make a gigantic leap from
the energy scales we presently understand to Planckian energy scales. While of
course we must all hope someone clever enough can come up with the correct
recipe for this gigantic jump, one less optimistic strategy that might be worth
pursuing is the one of trying to come up with some effective theory useful for the
description of new space-time-related phenomena occurring in an energy-scale
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range extending from somewhere not much above presently achievable energies
up to somewhere safely below the Planck scale. These theories might provide
guidance to experimentalists, and in turn (if confirmed by experiments) might
provide a useful intermediate step toward the Planck scale. For those who are
not certain that we can make a lucky guess of the whole giant step toward the
Planck scale20 this strategy might provide a possibility to eventually get to the
Planck regime only after a (long and painful) series of intermediate steps. Some
of the ideas discussed in the previous sections can be seen as examples of this
strategy. In this section I collect additional relevant material.

10.1 A low-energy effective theory of quantum gravity

While the primary emphasis has been on experimental tests of quantum-gravity-
motivated candidate phenomena, some of the arguments (which are based on
Refs. [12,13,24]) reviewed in these lecture notes can be seen as attempts to in-
dentify some of the properties that one could demand of a theory suitable for
a first stage of partial unification of gravitation and quantum mechanics. This
first stage of partial unification would be a low-energy effective theory captur-
ing only some rough features of quantum gravity. In particular, as discussed in
Refs. [23,13,24], it is plausible that the most significant implications of quan-
tum gravity for low-energy (large-distance) physics might be associated with the
structure of the non-trivial “quantum-gravity vacuum”. A satisfactory picture
of this vacuum is not available at present, and therefore we must generically
characterize it as the appropriate new concept that in quantum gravity takes
the place of the ordinary concept of “empty space”; however, it is plausible that
some of the arguments by Wheeler, Hawking and others, attempting to develop
an intuitive description of the quantum-gravity vacuum, might have captured
at least some of its actual properties. Therefore the experimental investigations
of space-time foam discussed in some of the preceding sections could be quite
relevant for the search of a theory describing a first stage of partial unification
of gravitation and quantum mechanics.

Other possible elements for the search of such a theory come from stud-
ies suggesting that this unification might require a new (non-classical) concept
of measuring apparatus and a new relationship between measuring apparatus
and system. I have reviewed some of the relevant arguments [12,13] through
the discussion of the Salecker-Wigner setup for the measurement of distances,
which manifested the problems associated with the infinite-mass classical-device
limit. As mentioned, a similar conclusion was already drawn in the context of
attempts (see, e.g., Ref. [90]) to generalize to the study of the measurability of
gravitational fields the famous Bohr-Rosenfeld analysis [91] of the measurability

20 Understandably, some are rendered prudent by the realization that the ratio between
the Planck length and the length scales which will be probed by LHC and LIGO is
actually somewhat smaller than, say, the ratio between the typical lengths charac-
terizing the size of small insects and the distance between the planet Pluto and the
Sun.
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of the electromagnetic field. It seems reasonable to explore the possibility that
already the first stage of partial unification of gravitation and quantum mechan-
ics might require a new mechanics. A (related) plausible feature of the correct
effective low-energy theory of quantum-gravity is (some form of) a novel bound
on the measurability of distances. This appears to be an inevitable consequence
of relinquishing the idealized methods of measurement analysis that rely on the
artifacts of the infinite-mass classical-device limit. If indeed one of these novel
measurability bounds holds in the physical world, and if indeed the structure of
the quantum-gravity vacuum is non-trivial and involves space-time fuzziness, it
appears also plausible that this two features be related, i.e. that the fuzziness of
space-time would be ultimately responsible for the measurability bounds. It is
also plausible [23,13] that an effective large-distance description of some aspects
of quantum gravity might involve quantum symmetries and noncommutative ge-
ometry (while at the Planck scale even more novel geometric structures might
be required).

The intuition emerging from these considerations on a novel relationship be-
tween measuring apparatus and system and by a Wheeler-Hawking picture of
the quantum-gravity vacuum has not yet been implemented in a fully-developed
new formalism describing the first stage of partial unification of gravitation and
quantum mechanics, but one can use this emerging intuition for rough estimates
of certain candidate quantum-gravity effects. Some of the theoretical estimates
that I reviewed in the preceding sections, particularly the ones on distance fuzzi-
ness, can be seen as examples of this.

Besides the possibility of direct experimental tests (such as some of the ones
here reviewed), studies of low-energy effective quantum-gravity models might
provide a perspective on quantum gravity that is complementary with respect
to the one emerging from approaches based on proposals for a one-step full
unification of gravitation and quantum mechanics. On one side of this comple-
mentarity there are the attempts to find a low-energy effective quantum gravity
which are necessarily driven by intuition based on direct extrapolation from
known physical regimes; they are therefore rather close to the phenomelogical
realm but they are confronted by huge difficulties when trying to incorporate
this physical intuition within a completely new formalism. On the other side
there are the attempts of one-step full unification of gravitation and quantum
mechanics, which usually start from some intuition concerning the appropriate
formalism (e.g., canonical/loop quantum gravity or critical superstrings) but are
confronted by huge difficulties when trying to “come down” to the level of phe-
nomenological predictions. These complementary perspectives might meet at the
mid-way point leading to new insight in quantum gravity physics. One instance
in which this mid-way-point meeting has already been successful is provided by
the mentioned results reported in Ref. [41], where the candidate phenomenon
of quantum-gravity induced deformed dispersion relations, which had been pro-
posed within phenomenological analyses [46,23,5] of the type needed for the
search of a low-energy theory of quantum gravity, was shown to be consistent
with the structure of canonical/loop quantum gravity.
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10.2 Theories on non-commutative Minkowski space-time

At various points in these notes there is a more or less explicit reference to
deformed symmetries and noncommutative space-times21. Just in the previous
subsection I have recalled the conjecture [23,13] that an effective large-distance
description of some aspects of quantum gravity might involve quantum sym-
metries and noncommutative geometry. The type of in vacuo dispersion which
can be tested [5] using observations of gamma rays from distant astrophysical
sources is naturally encoded within a consistent deformation of Poincaré sym-
metries [23,27,28].

A useful structure (at least for toy-model purposes, but perhaps even more
than that) appears to be the noncommutative (so-called “κ”) Minkowski space-
time [62,63,21]

[xi, t] = ıλ xi, [xi, xj ] = 0 (38)

where i, j = 1, 2, 3 and λ (commonly denoted22 by 1/κ) is a free length scale.
This simple noncommutative space-time could be taken as a basis for an effec-
tive description of phenomena associated to a nontrivial foamy quantum-gravity
vacuum23. When probed very softly such a space would appear as an ordinary
Minkowski space-time24, but probes of sufficiently high energy would be affected
by the properties of the quantum-gravity foam and one could attempt to model
(at least some aspects of) the corresponding dynamics using a noncommutative
Minkowski space-time. In light of this physical motivation it is natural to assume
that λ be related to the Planck length.

The so-called κ-deformed Poincaré quantum group [99] acts covariantly [63]
on the κ-Minkowski space-time (38). The dispersion relation for massless spin-0
particles

λ−2
(
eλE + e−λE − 2

)
− k2e−λE = 0 , (39)

which at low energies describes a deformation that is linearly suppressed by
λ (and therefore, if indeed λ ∼ Lp, is of the type discussed in Section 5),
21 The general idea of some form of connection between Planck-scale physics and quan-

tum groups (with their associated noncommutative geometry) is of course not new,
see e.g., Refs. [96–98,?,21,100–103]. Moreover, some support for noncommutativity
of space-time has also been found within measurability analyses [32,23].

22 As for the notations LQG and EQG, this author is partly responsible [28] for the
redundant convention of using the notation λ when the reader is invited to visualize
a length scale and going back to the κ notation when instead it might be natural for
the reader to visualize a length scale.

23 In particular, within one particular attempt to model space-time foam, the one of
Liouville non-critical strings [19], the time “coordinate” appears [104] to have prop-
erties that might be suggestive of a κ-Minkowski space-time.

24 Generalizations would of course be necessary for a description of how the quantum-
gravity foam affects spaces which are curved (non-Minkowski) at the classical level,
and even for spaces which are Minkowski at the classical level a full quantum gravity
of course would predict phenomena which could not be simply encoded in noncom-
mutativity of Minkowski space.
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emerges [21,27,28] as the appropriate Casimir of the κ-deformed Poincaré group.
Rigorous support for the interpretation of (39) as a bona fide dispersion relation
characterizing the propagation of waves in the κ-Minkowski space-time was re-
cently provided in Ref. [28].

In Ref. [28] it was also observed that, using the quantum group Fourier trans-
form which was worked out for our particular algebra in Ref. [105], there might
be a rather simple approach to the definition of a field theory on the κ-Minkowski
space-time. In fact, through the quantum group Fourier transform it is possible
to rewrite structures living on noncommutative space-time as structures living
on a classical (but nonAbelian) “energy-momentum” space. If one is content to
evaluate everything in energy-momentum space, this observation gives the op-
portunity to by-pass all problems directly associated with the non-commutativity
of space-time. While waiting for a compelling space-time formulation of field the-
ories on noncommutative geometries to emerge, it seems reasonable to restrict
all considerations to the energy-momentum space. This approach does not work
for any noncommutative space-time but for all those where the space-time co-
ordinate algebra is the enveloping algebra of a Lie algebra, with the Lie algebra
generators regarded ‘up side down’ as noncommuting coordinates [106].25

Within this viewpoint a field theory is not naturally described in terms
of a Lagrangian, but rather it is characterized directly in terms of Feynman
diagrams. In principle, according to this proposal a given ordinary field the-
ory can be “deformed” into a counterpart living in a suitable noncommutative
space-time not by fancy quantum-group methods but simply by the appropriate
modification of the momentum-space Feynman rules to those appropriate for a
nonAbelian group. Additional considerations can be found in Ref. [28], but, in
order to give at least one example of how this nonAbelian deformation could
be applied, let me observe here that the natural propagator of a massless spin-0
particle on κ-Minkowski space-time should be given in energy-momentum space
by the inverse of the operator in the dispersion relation (39), i.e. in place of
D = (ω2 − k2 −m2)−1 one would take

Dλ =
(
λ−2(eλω + e−λω − 2)− e−λωk2

)−1
. (40)

As discussed in Ref. [28] the elements of this approach to field theory appear to
lead naturally to a deformation of CPT symmetries, which would first show up
in experiments as a violation of ordinary CPT invariance. The development of
realistic field theories of this type might therefore provide us a single formalism
in which both in vacuo dispersion and violations of ordinary CPT invariance
could be computed explicitly (rather than being expressed in terms of unknown
parameters), connecting all of the aspects of these candidate quantum-gravity
phenomena to the value of λ ≡ 1/κ. One possible “added bonus” of this approach
could be associated to the fact that also loop integration must be appropriately
deformed, and it appears plausible [28] that (as in other quantum-group based
25 Another (partly related, but different) κ-Minkowski motivated proposal for field

theory was recently put forward in Ref. [107]. I thank J. Lukierski for bringing this
paper to my attention.
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approaches [98]) the deformation might render ultraviolet finite some classes of
diagrams which would ordinarily be affected by ultraviolet divergences.

11 Conservative motivation and other closing remarks

Since this paper started off with the conclusions, readers might not be too sur-
prised of the fact that I devote most of the closing remarks to some additional
motivation. These remarks had to be postponed until the very end also because
in reviewing the experiments it would have been unreasonable to take a con-
servative viewpoint: those who are so inclined should find in the present lecture
notes encouragement for unlimited excitement. However, before closing I must
take a step back and emphasize those reasons of interest in this emerging phe-
nomenology which can be shared even by those readers who are approaching all
this from a conservative viewpoint.

In reviewing these quantum-gravity experiments I have not concealed my
(however moderate) optimism regarding the prospects for data-driven advances
in quantum-gravity research. I have reminded the reader of the support one
finds in the quantum-gravity literature for the type of phenomena which we can
now start to test, particularly distance fuzziness and violations of Lorentz and/or
CPT symmetries and I have also emphasized that it is thanks to recent advances
in experimental techniques and ideas that these phenomena can be tested (see,
for example, the role played by the remarkable sensitivities recently achieved
with modern interferometers in the experimental proposal reviewed in Section 4
and the role played by very recent break-throughs in GRB phenomenology in
the experimental proposal reviewed in Section 5). But now let me emphasize
that even from a conservative viewpoint these experiments are extremely sig-
nificant, especially those that provide tests of quantum mechanics and tests of
fundamental symmetries. One would not ordinarily need to stress this, but since
these lectures are primarily addressed to young physics students let me observe
that of course this type of tests is crucial for a sound development of our science.
Even if there was no theoretical argument casting doubts on them, we could not
possibly take for granted (extrapolating ad infinitum) ingredients of our under-
standing of Nature as crucial as its mechanics laws and its symmetry structure.
We should test quantum mechanics and fundamental symmetries anyway, we
might as well do it along the directions which appear to be favoured by some
quantum-gravity ideas.

A somewhat related observation can be made concerning the fact that most
of these experiments actually test only one of the two main branches of quantum-
gravity proposals: the proposals in which (in one or another fashion) quantum
decoherence is present. There is in fact a connection (whose careful discussion I
postpone to future publications) between decoherence and the type of violations
of Lorentz and CPT symmetries and the type of power-law dependence on Tobs
of distance fuzziness here considered. The portion of our community which finds
appealing the arguments supporting the decoherence-inducing Wheeler-Hawking
space-time foam (and certain views on the so-called “black-hole information
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paradox”) finds in these recent developments in quantum-gravity phenomenology
an opportunity for direct tests of some of its intuition. The rest of our community
has developed an orthogonal intuition concerning the quantum-gravity realm, in
which there is no place for quantum decoherence. Even this second group might
be looking forward to the outcome of experiments on quantum decoherence,
since the results are going to put under serious test the alternative approach.
Moreover, the fact that we are finally at least at the point of testing decoherence-
involving quantum-gravity approaches (something which was also supposed to
be impossible) should be seen as encouragement for the hope that even other
quantum-gravity approaches will eventually be tested experimentally.

Even though there is of course no guarantee that this new phenomenology
will be able to uncover important elements of the structure of quantum grav-
ity, the fact that such a phenomenological programme exists suffices to make a
legitimate (empirical) science of quantum gravity, a subject often derided as a
safe heaven for theorists wanting to speculate freely without any risk of being
proven wrong by experiments. As emphasized in Refs. [85,108] (and even in the
non-technical press [109]) this can be an important turning point in the devel-
opment of the field. Concerning the future of quantum-gravity phenomenology
let me summarize my expectations in the form of a response to the question
posed by the title of these notes: I believe that we are indeed at the dawn of
quantum-gravity phenomenology, but the forecasts call for an extremely long
and cloudy day with only a few rare moments of sunshine. Especially for those
of us motivated by theoretical arguments suggesting that at the end of the road
there should be a wonderful revolution of our understanding of Nature (perhaps
a revolution of even greater magnitude than the one undergone during the first
years of this 20th century), it is crucial to profit fully from the few glimpses of
the road ahead which quantum-gravity phenomenology will provide.
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66. P. Mészáros astro-ph/9711354, in Gamma-Ray Bursts, Proc. 4th Huntsville Sym-
posium (eds Meegan C., Preece R. and Koshut T.) (AIP, in press)

67. AMS Collaboration, S. Ahlen et al., Nucl. Instrum. Meth. A350 (1994) 351-367.
68. GLAST Team, E.D. Bloom et al., Proc. Intern. Heidelberg Workshop on TeV

Gamma-ray Astrophysics, eds. H.J. Volk and F.A. Aharonian (Kluwer, 1996)
pp.109-125.

69. J.D. Scargle, J. Norris and J. Bonnell, astro-ph/9712016.



48 Giovanni Amelino-Camelia

70. S.R. Kulkarni et al., Nature 395 (1998) 663; T.J. Galama et al., Nature 395 (1998)
670.

71. K.C. Walker, B.E. Schaefer and E.E. Fenimore, astro-ph/9810271.

72. S.Y. Sazonov et al., Astron. Astrophys. Suppl. 129 (1998) 1.

73. H. Krawczynski et al., astro-ph/9611044, Proc. Intern. School of Cosmic-Ray As-
trophysics, Erice, 1996 (World Scientific, in press).

74. P.J. Boyle et al., astro-ph/9706132, Proc. 25th Intern. Cosmic ray Conf., Durban,
Vol.3, 61 (eds Potgieter M.S. et al.,) (Wesprint, Potchefstroom, 1998).

75. J. Ellis, J.L. Lopez, N.E. Mavromatos and D.V. Nanopoulos, Phys. Rev. D53 (1996)
3846.

76. G. Veneziano, Phys. Lett. B265 (1991) 287; M. Gasperini and G. Veneziano, As-
tropart. Phys. 1 (1993) 317.

77. R. Brustein, gr-qc/9810063; G. Veneziano, hep-th/9902097; M. Gasperini, hep-
th/9907067; M. Maggiore, gr-qc/9909001.

78. I. Antoniadis, Phys. Lett. B246 (1990) 377; J. Lykken, Phys. Rev. D54 (1996) 3693;
E. Witten, Nucl.Phys. B471 (1996) 135.

79. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998) 263.

80. K.R. Dienes, E. Dudas and T. Gherghetta, Phys. Lett. B436 (1998) 55.

81. Hong-wei Yu and L.H. Ford, gr-qc/9907037

82. A. Campbell-Smith, J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, hep-
th/9907141.

83. J.J. Sakurai, Modern Quantum Mechanics, (Addison-Wesley, Reading, 1994)
pp.126-129.

84. K.C. Littrell, B.E. Allman and S.A. Werner, Phys. Rev. A56 (1997) 1767.

85. D.V. Ahluwalia, Nature 398 (1999) 199.

86. G. Amelino-Camelia, gr-qc/9804063, Mod. Phys. Lett. A13 (1998) 1155; gr-
qc/9808047, in Proceedings of 7th International Colloquium on Quantum Groups
and Integrable Systems

87. D. Kabat and P. Pouliot, Phys. Rev. Lett. 77 (1996) 1004; M.R. Douglas, D. Kabat,
P. Pouliot, S.H. Shenker, Nucl. Phys. B485 (1997) 85.

88. M.-T. Jaekel and S. Reynaud, Europhys. Lett. 13 (1990) 301.

89. M.-T. Jaekel and S. Reynaud, Phys. Lett. B185 (1994) 143.

90. P.G. Bergmann and G.J. Smith, Gen. Rel. Grav. 4 (1982) 1131.

91. N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab S. Nat. Fys. Medd. 12 (1933) 1.

92. E.P. Wigner, Rev. Mod. Phys. 29 (1957) 255; H. Salecker and E.P. Wigner,
Phys. Rev. 109 (1958) 571.

93. S.W. Hawking, Nature 248 (1974) 30.

94. W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik. Handbuch der Physik,
edited by S. Fluegge (Springer, 1958).

95. F. Markopoulou, gr-qc/9704013; F. Markopoulou and L. Smolin, Phys. Rev. D58
(1998) 084033

96. S. Majid, Hopf algebras for physics at the Planck scale, Class. Quantum Grav. 5
(1988) 1587.

97. S. Majid, Non-commutative-geometric Groups by a Bicrossproduct Construction,
(PhD thesis, Harvard mathematical physics, 1988).

98. S. Majid, On q-regularization, Int. J. Mod. Phys. A5 (1990) 4689-4696.

99. J. Lukierski, A. Nowicki, H. Ruegg, and V.N. Tolstoy, Phys. Lett. B264 (1991) 331.

100. A. Nowicki, E. Sorace and M. Tarlini, Phys. Lett. B302 (1993) 419.

101. M. Maggiore, Phys. Lett. B319 (1993) 83-86.



Quantum-gravity phenomenology 49

102. S. Doplicher, K. Fredenhagen and J.E. Roberts. Phys. Lett. B331 (1994) 39; S.
Doplicher, K. Fredenhagen and J.E. Roberts. Commun. Math. Phys. 172 (1995)
187; S. Doplicher, Annales Poincare Phys. Theor. 64 (1996) 543.

103. A. Kempf, J. Math. Phys. 35 (1994) 4483; A. Kempf, G. Mangano, and R.B.
Mann, Phys. Rev. D52 (1995) 1108; A. Kempf and G. Mangano, Phys. Rev. D55
(1997) 7909.

104. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos and D.V. Nanopoulos,
Mod. Phys. Lett. A12 (1997) 2029.

105. S. Majid and R. Oeckl, Twisting of quantum differentials and the Planck scale
Hopf agebra, preprint 1998, to appear Commun. Math. Phys.

106. S. Majid, Duality principle and braided geometry, Springer Lec. Notes in Physics
447 (1995) 125.

107. P. Kosinski, J. Lukierski and P. Maslanka, hep-th/9902037.
108. A. Ashtekar, gr-qc/9901023.
109. G. Musser, Scientific American, October 1998 issue; R. Matthews, New Scientist,

20 March 1999 issue; M. Brooks, New Scientist, 19 June 1999 issue.



Classical and Quantum Physics
of Isolated Horizons: A Brief Overview

Abhay Ashtekar1,2

1 Center for Gravitational Physics and Geometry
Department of Physics, The Pennsylvania State University
University Park, PA 16802, USA

2 Institute for Theoretical Physics,
University of California, Santa Barbara, CA 93106, USA

Abstract. The arena normally used in black holes thermodynamics was recently gen-
eralized to incorporate a broad class of physically interesting situations. The key idea is
to replace the notion of stationary event horizons by that of ‘isolated horizons.’ Unlike
event horizons, isolated horizons can be located in a space-time quasi-locally. Further-
more, they need not be Killing horizons. In particular, a space-time representing a
black hole which is itself in equilibrium, but whose exterior contains radiation, admits
an isolated horizon. In spite of this generality, the zeroth and first laws of black hole
mechanics extend to isolated horizons. Furthermore, by carrying out a systematic, non-
perturbative quantization, one can explore the quantum geometry of isolated horizons
and account for their entropy from statistical mechanical considerations. After a gen-
eral introduction to black hole thermodynamics as a whole, these recent developments
are briefly summarized.

1 Motivation

In the seventies, there was a flurry of activity in black hole physics which brought
out an unexpected interplay between general relativity, quantum field theory
and statistical mechanics [1–4]. That analysis was carried out only in the semi-
classical approximation, i.e., either in the framework of Lorentzian quantum
field theories in curved space-times or by keeping just the leading order, zero-
loop terms in Euclidean quantum gravity. Nonetheless, since it brought together
the three pillars of fundamental physics, it is widely believed that these results
capture an essential aspect of the more fundamental description of Nature. For
over twenty years, a concrete challenge to all candidate quantum theories of
gravity has been to derive these results from first principles, without invoking
semi-classical approximations.

Specifically, the early work is based on a somewhat ad-hoc mixture of clas-
sical and semi-classical ideas – reminiscent of the Bohr model of the atom –
and generally ignored the quantum nature of the gravitational field itself. For
example, statistical mechanical parameters were associated with macroscopic
black holes as follows. The laws of black hole mechanics were first derived in the
framework of classical general relativity, without any reference to the Planck’s
constant ~ [2]. It was then noted that they have a remarkable similarity with the
laws of thermodynamics if one identifies a multiple of the surface gravity κ of the
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black hole with temperature and a corresponding multiple of the area ahor of its
horizon with entropy. However, simple dimensional considerations and thought
experiments showed that the multiples must involve ~, making quantum consid-
erations indispensable for a fundamental understanding of the relation between
black hole mechanics and thermodynamics [1]. Subsequently, Hawking’s inves-
tigation of (test) quantum fields propagating on a black hole geometry showed
that black holes emit thermal radiation at temperature Trad = ~κ/2π [3]. It
therefore seemed natural to assume that black holes themselves are hot and
their temperature Tbh is the same as Trad. The similarity between the two sets
of laws then naturally suggested that one associate an entropy Sbh = ahor/4~
with a black hole of area ahor. While this procedure seems very reasonable, it
does not provide a ‘fundamental derivation’ of the thermodynamic parameters
Tbh and Sbh. The challenge is to derive these formulas from first principles, i.e.,
by regarding large black holes as statistical mechanical systems in a suitable
quantum gravity framework.

Recall the situation in familiar statistical mechanical systems such as a gas,
a magnet or a black body. To calculate their thermodynamic parameters such as
entropy, one has to first identify the elementary building blocks that constitute
the system. For a gas, these are molecules; for a magnet, elementary spins; for the
radiation field in a black body, photons. What are the analogous building blocks
for black holes? They can not be gravitons because the underlying space-times
were assumed to be stationary. Therefore, the elementary constituents must be
non-perturbative in the field theoretic sense. Thus, to account for entropy from
first principles within a candidate quantum gravity theory, one would have to:
i) isolate these constituents; ii) show that, for large black holes, the number of
quantum states of these constituents goes as the exponential of the area of the
event horizon; and, iii) account for the Hawking radiation in terms of processes
involving these constituents and matter quanta.

These are difficult tasks, particularly because the very first step –isolating the
relevant constituents– requires new conceptual as well as mathematical inputs.
Furthermore, in the semi-classical theory, thermodynamic properties have been
associated not only with black holes but also with cosmological horizons. There-
fore, ideally, the framework has to be sufficiently general to encompass these
diverse situations. It is only recently, more than twenty years after the initial
flurry of activity, that detailed proposals have emerged. The more well-known of
these comes from string theory [27] where the relevant elementary constituents
are associated with D-branes which lie outside the original perturbative sector of
the theory. The purpose of this contribution is to summarize the ideas and results
from another approach which emphasizes the quantum nature of geometry, us-
ing non-perturbative techniques from the very beginning. Here, the elementary
constituents are the quantum excitations of geometry itself and the Hawking
process now corresponds to the conversion of the quanta of geometry to quanta
of matter. Although the two approaches seem to be strikingly different from one
another, as I will indicate, in a certain sense they are complementary.
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2 Key Issues

In the last section, I focussed on quantum issues. However, the status of clas-
sical black hole mechanics, which provided much of the inspiration in quantum
considerations, has itself remained unsatisfactory in some ways. Therefore, in a
systematic approach, one has to revisit the classical theory before embarking on
quantization.

The zeroth and first laws of black hole mechanics refer to equilibrium situa-
tions and small departures therefrom. Therefore, in this context, it is natural to
focus on isolated black holes. However, in standard treatments, these are gen-
erally represented by stationary solutions of field equations, i.e, solutions which
admit a time-translation Killing vector field everywhere, not just in a small neigh-
borhood of the black hole. While this simple idealization is a natural starting
point, it seems to be overly restrictive. Physically, it should be sufficient to im-
pose boundary conditions at the horizon which ensure only the black hole itself
is isolated. That is, it should suffice to demand only that the intrinsic geometry
of the horizon be time independent, whereas the geometry outside may be dy-
namical and admit gravitational and other radiation. Indeed, we adopt a similar
viewpoint in ordinary thermodynamics; in the standard description of equilib-
rium configurations of systems such as a classical gas, one usually assumes that
only the system under consideration is in equilibrium and stationary, not the
whole world. For black holes, in realistic situations one is typically interested
in the final stages of collapse where the black hole is formed and has ‘settled
down’ or in situations in which an already formed black hole is isolated for the
duration of the experiment (see figure 1). In such situations, there is likely to be
gravitational radiation and non-stationary matter far away from the black hole,
whence the space-time as a whole is not expected to be stationary. Surely, black
hole mechanics should incorporate in such situations.

A second limitation of the standard framework lies in its dependence on event
horizons which can only be constructed retroactively, after knowing the complete
evolution of space-time. Consider for example, Figure 2 in which a spherical star
of mass M undergoes a gravitational collapse. The singularity is hidden inside
the null surface ∆1 at r = 2M which is foliated by a family of marginally
trapped surfaces and would be a part of the event horizon if nothing further
happens. Suppose instead, after a very long time, a thin spherical shell of mass
δM collapses. Then ∆1 would not be a part of the event horizon which would
actually lie slightly outside ∆1 and coincide with the surface r = 2(M + δM) in
distant future. On physical grounds, it seems unreasonable to exclude∆1 a priori
from thermodynamical considerations. Surely one should be able to establish the
standard laws of laws of mechanics not only for the event horizon but also for
∆1.

Another example is provided by cosmological horizons in de Sitter space-
time [4]. In this case, there are no singularities or black-hole event horizons.
On the other hand, semi-classical considerations enable one to assign entropy
and temperature to these horizons as well. This suggests the notion of event
horizons is too restrictive for thermodynamical analogies. We will see that this
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Fig. 1. (a) A typical gravitational collapse. The portion ∆ of the horizon at late
times is isolated. The space-time M of interest is the triangular region bounded by ∆,
I+ and a partial Cauchy slice M . (b) Space-time diagram of a black hole which is
initially in equilibrium, absorbs a small amount of radiation, and again settles down
to equilibrium. Portions ∆1 and ∆2 of the horizon are isolated.

is indeed the case; as far as equilibrium properties are concerned, the notion of
event horizons can be replaced by a more general, quasi-local notion of ‘isolated
horizons’ for which the familiar laws continue to hold. The surface ∆1 in figure
2 as well as the cosmological horizons in de Sitter space-times are examples of
isolated horizons.

At first sight, it may appear that only a small extension of the standard
framework, based on stationary event horizons, is needed to overcome the lim-
itations discussed above. However, this is not the case. For example, in the
stationary context, one identifies the black-hole mass with the ADM mass de-
fined at spatial infinity. In the presence of radiation, this simple strategy is no
longer viable since radiation fields well outside the horizon also contribute to
the ADM mass. Hence, to formulate the first law, a new definition of the black
hole mass is needed. Similarly, in the absence of a global Killing field, the notion
of surface gravity has to be extended in a non-trivial fashion. Indeed, even if
space-time happens to be static in a neighborhood of the horizon —already a
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2
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∆

∆ δM

M

Fig. 2. A spherical star of mass M undergoes collapse. Later, a spherical shell of mass
δM falls into the resulting black hole. While ∆1 and ∆2 are both isolated horizons,
only ∆2 is part of the event horizon.

stronger condition than contemplated above— the notion of surface gravity is
ambiguous because the standard expression fails to be invariant under constant
rescalings of the Killing field. When a global Killing field exists, the ambiguity
is removed by requiring the Killing field be unit at infinity. Thus, contrary to
intuitive expectation, the standard notion of the surface gravity of a stationary
black hole refers not just to the structure at the horizon, but also to infinity.
This ‘normalization problem’ in the definition of the surface gravity seems espe-
cially difficult in the case of cosmological horizons in (Lorentzian) space-times
whose Cauchy surfaces are compact. Apart from these conceptual problems, a
host of technical issues must also be resolved. In Einstein-Maxwell theory, the
space of stationary black hole solutions is three dimensional whereas the space of
solutions admitting isolated horizons is infinite-dimensional since these solutions
admit radiation near infinity. As a result, new techniques have to be used and
these involve some functional analytic subtleties.

This set of issues has a direct bearing on quantization as well. For, in a sys-
tematic approach, one would first extract an appropriate sector of the theory
in which space-time geometries satisfy suitable conditions at interior boundaries
representing horizons, then introduce a well-defined action principle tailored to
these boundary conditions, and, finally, use the resulting Lagrangian or Hamilto-
nian frameworks as points of departure for constructing the quantum theory. If
one insists on using event horizons, these steps are difficult to carry out because
the resulting boundary conditions do not translate in to (quasi-)local restrictions
on fields. Indeed, for event horizon boundaries, there is no action principle avail-
able in the literature. The restriction to globally stationary space-times causes
additional difficulties. For, by no hair theorems, the space of stationary solu-
tions admitting event horizons is finite dimensional and quantization of this
‘mini-superspace’ would ignore all field theoretic effects by fiat. Indeed, most
treatments of black hole mechanics are based on differential geometric identities
and field equations, and are not at all concerned with such issues related to
quantization.
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Thus, the first challenge is to find a new framework which achieves, in a single
stroke, three goals: i) it overcomes the two limitations of black hole mechanics
by finding a better substitute for stationary event horizons; ii) generalizes laws
of black hole mechanics to the new, more physical paradigm; and, iii) leads
to a well-defined action principle and Hamiltonian framework which can serve
as springboards for quantization. The second challenge is then to: i) carry out
quantization non-perturbatively; ii) obtain a quantum description of the horizon
geometry; and, iii) account for the the horizon entropy statistical mechanically
by counting the underlying micro-states. As discussed in the next section, these
goals have been met for non-rotating isolated horizons.

3 Summary

In this section, I will sketch the main ideas and results on the classical and
quantum physics of isolated horizons and provide a guide to the literature where
details can be found.

3.1 Isolated horizons

The detailed boundary conditions defining non-rotating isolated horizons were
introduced in [10,12]. Basically, an isolated horizon ∆ is a null 3-surface, topo-
logically S2 × R, foliated by a family of marginally trapped 2-spheres. Denote
the normal direction field to ∆ by [�a]. Being null, it is also tangential to ∆.
The boundary conditions require that it be expansion-free, so that the area of
the marginally trapped surface remains constant ‘in time’. Assuming that the
matter fields under consideration satisfy a very weak ‘energy condition’ at ∆,
the Raychaudhuri equation then implies that there is no flux of matter across∆.
More detailed analysis also shows that there is no flux of gravitational radiation.
(More precisely, the Newman-Penrose curvature component Ψ0 vanishes on ∆.)
These properties capture the idea that the horizon is isolated. Denote the sec-
ond null normal to the family of marginally trapped 2-spheres by [na]. There are
additional conditions on the Newman-Penrose spin coefficients associated with
[na] which ensure that ∆ is a future horizon with no rotation.

Event horizons of static black holes of the Einstein-Maxwell-Dilaton theory
are particular examples of non-rotating isolated horizons. The cosmological hori-
zons in de Sitter space-time provide other examples. However, there are many
other examples as well; the space of solutions admitting isolated horizons is in
fact infinite dimensional [14,12].

All conditions in the definition are local to ∆ whence the isolated horizon
can be located quasi-locally; unlike the event horizon, one does not have to know
the entire space-time to determine whether or not a given null surface is an
isolated horizon. Also, there may be gravitational or other radiation arbitrarily
close to ∆. Therefore, in general, space-times admitting isolated horizons need
not be stationary even in a neighborhood of ∆; isolated horizons need not be
Killing horizons [14]. In spite of this generality, the intrinsic geometry, several
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of the curvature components and several components of the Maxwell field at
any isolated horizon are the same as those at the event horizon of Reissner-
Nordström space-times [12,10,13]. This similarity greatly simplifies the detailed
analysis.

Finally, isolated horizons are special cases of Hayward’s trapping horizons
[18], the most important restriction being that the direction field [�a] is assumed
to be expansion-free. Physically, as explained above, this restriction captures
the idea that the horizon is ‘isolated’, i.e., we are dealing with an equilibrium
situation. The restriction also gives rise to some mathematical simplifications
which, in turn, make it possible to introduce a well-defined action principle and
Hamiltonian framework. As we will see below, these structures play an essential
role in the proof of the generalized first law and in passage to quantization.

3.2 Mechanics

Let me begin by placing the present work on mechanics of isolated horizons in
the context of other treatments in the literature. The first treatments of the
zeroth and first laws were given by Bardeen, Carter and Hawking [2] for black
holes surrounded by rings of perfect fluid and this treatment was subsequently
generalized to include other matter sources [5]. In all these works, one restricted
oneself to globally stationary space-times admitting event horizons and consid-
ered transitions from one such space-time to a nearby one. Another approach,
based on Noether charges, was introduced by Wald and collaborators [19,6].
Here, one again considers stationary event horizons but allows the variations to
be arbitrary. Furthermore, this method is applicable not only for general relativ-
ity but for stationary black holes in a large class of theories. In both approaches,
the surface gravity κ and the mass M of the hole were defined using the global
Killing field and referred to structure at infinity.

The zeroth and first laws were generalized to arbitrary, non-rotating isolated
horizons∆ in the Einstein-Maxwell theory in [11,12] and dilatonic couplings were
incorporated in [13]. In this work, the surface gravity κ and the mass M∆ of the
isolated horizon refer only to structures local to ∆.1 As mentioned in section 3.1,
the space IH of solutions admitting isolated horizons is infinite dimensional and
static solutions constitute only a finite dimensional sub-space S of IH. Let us
restrict ourselves to the non-rotating case for comparison. Then, in treatments
based on the Bardeen-Carter-Hawking approach, one restricts oneself only to S
and variations tangential to S. In the Wald approach, one again restricts oneself
to points of S but the variations need not be tangential to S. In the present
approach, on the other hand, the laws hold at any point of IH and any tangent

1 In standard treatments, static solutions are parametrized by the ADM mass M ,
electric and magnetic charges Q and P , dilatonic charge D, cosmological constant Λ
and the dilatonic coupling parameter α. Of these, M and D are defined at infinity.
In the generalized context of isolated horizons, on the other hand, one must use
parameters that are intrinsic to ∆. Apriori, it is not obvious that this can be done.
It turns out that we can trade M with the area a∆ of the horizon and D with the
value φ∆ of the dilaton field on ∆. Boundary conditions ensure that φ∆ is a constant.



Physics of Isolated Horizons 57

vector at that point. However, so far, our results pertain only to non-rotating
horizons in a restricted class of theories.

The key ideas in the present work can be summarized as follows. It is clear
from the setup that surface gravity should be related to the acceleration of [�a].
Recall, however, the acceleration is not a property of a direction field but of
a vector field. Therefore, to define surface gravity, we must pick out a specific
vector field �a from the equivalence class [�a]. Now, the shear, the twist, and the
expansion of the direction field [�a] all vanish for any choice of normalization.
Therefore, we can not use these fields to pick out a preferred �a. However, it turns
out that the expansion Θ(n) of n

a is sensitive to its normalization. Furthermore,
in static solutions, Θ(n) is determined entirely by the intrinsic parameters of
the horizon. Therefore, it is natural to require that Θ(n) be the same function
of the parameters on any isolated horizon. Although it is not apriori obvious,
the available rescaling freedom in fact suffices to meet this requirement on any
isolated horizon. Furthermore, the condition uniquely picks out a vector field na

from the equivalence class [na]. Having a preferred na at our disposal, using the
standard normalization � ·n = −1 we can then select an �a from the equivalence
class [�a] uniquely. Finally, we define surface gravity κ to be the acceleration of
this ‘properly normalized’ �a; i.e., we set �a∇a�

b = κ�b On ∆.
By construction, κ, so defined, yields the ‘correct’ surface gravity in the six

parameter family of static, dilatonic black-holes. However, the key question is:
Do the zeroth and first laws hold for general isolated horizons? This is a key test
of our strategy of defining κ in the general case. The answer is in the affirmative.

The zeroth law –constancy of κ on isolated horizons– is established as follows.
First, our boundary conditions on [�a] and [na] directly imply that κ is constant
on each trapped 2-surface. Next, one can show that κ can be expressed in terms
of the Weyl curvature component Ψ2 and the expansionΘ(n). Finally, the Bianchi
identity ∇[aRbc]de = 0, the form of the Ricci tensor component Φ11 dictated by
our boundary conditions on the matter stress-energy, and our ‘normalization
condition’ on Θ(n) imply that κ is also constant along the integral curves of
�a. Hence κ is constant on any isolated horizon. To summarize, even though
our boundary conditions allow for the presence of radiation arbitrarily close to
∆, they successfully extract enough structure intrinsic to the horizons of static
black holes to ensure the validity of the zeroth law. Our derivation brings out
the fact that the zeroth law is really local to the horizon: Degrees of freedom of
the isolated horizon ‘decouple’ from excitations present elsewhere in space-time.

To establish the first law, one must first introduce the notion of mass M∆ of
the isolated horizon. The idea is to define M∆ using the Hamiltonian framework.
For this, one needs a well-defined action principle. Fortunately, even though the
boundary conditions were designed only to capture the notion of an isolated
horizon in a quasi-local fashion, they turn out to be well-suited for the variational
principle. However, just as one must add a suitable boundary term at infinity
to the Einstein-Hilbert action to make it differentiable in the asymptotically flat
context, we must now add another boundary term at ∆. Somewhat surprisingly,
the new boundary term turns out to be the well-known Chern-Simons action
(for the self-dual connection). This specific form is not important to classical
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considerations. However, it plays a key role in the quantization procedure. The
boundary term at ∆ is different from that at infinity. Therefore one can not
simultaneously absorb both terms in the bulk integral using Stokes’ theorem.
Finally, to obtain a well-defined variational principle for the Maxwell part of the
action, one needs a partial gauge fixing at ∆. One can follow a procedure similar
to the one given above for fixing the rescaling freedom in na and �a. It turns out
that, not only does this strategy make the Maxwell action differentiable, but it
also uniquely fixes the scalar potential Φ at the horizon.

Having the action at one’s disposal, one can pass to the Hamiltonian frame-
work.2 Now, it turns out that the symplectic structure has, in addition to the
standard bulk term, a surface term at ∆. The surface term is inherited from the
Chern-Simons term in the action and is therefore precisely the Chern-Simons
symplectic structure with a specific coefficient (i.e., in the language of the Chern-
Simons theory, a specific value of the ‘level’ k). The presence of a surface term in
the symplectic structure is somewhat unusual; for example, the boundary term
at infinity in the action does not induce a boundary term in the symplectic
structure.

The Hamiltonian consists of a bulk integral and two surface integrals, one at
infinity and one at ∆. The presence of two surface integrals is not surprising; for
example one encounters it even in the absence of an internal boundary, if the
space-times under consideration have two asymptotic regions. As usual, the bulk
term is a linear combination of constraints and the boundary term at infinity is
the ADM energy. Using several examples as motivation, we interpret the surface
integral at horizon as the horizon massM∆ [12]. This interpretation is supported
by the following result: If the isolated horizon extends to future time-like infinity
i+, under suitable assumptions one can show that M∆ is equal to the future
limit, along I+, of the Bondi mass. Finally, note that M∆ is not a fundamental,
independent attribute of the isolated horizon; it is a function of the area a∆ and
charges Q∆, P∆ which are regarded as the fundamental parameters.

Thus, we can now assign to any isolated horizon, an area a∆, a surface gravity
κ, an electric potential Φ and a mass M∆. The electric charge Q∆ can be defined
using the electro-magnetic and dilatonic fields field at ∆ [13]. All quantities are
defined in terms of the local structure at ∆. Therefore, one can now ask: if one
moves from any space-time in IH to any nearby space-time through a variation
δ, how do these quantities vary? An explicit calculation shows:

δM∆ =
1

8πG
κδa∆ + ΦδQ∆ .

Thus, the first law of black hole mechanics naturally generalizes to isolated
horizons. (As usual, the magnetic charge can be incorporated via the standard
duality rotation.) This result provides additional support for our strategy of
defining κ, Φ and M∆.

2 This passage turns out not to be as straightforward as one might have imagined
because there are subtle differences between the variational principles that lead to
the Lagrangian and Hamiltonian equations of motion. See [12].
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In static space-times, the mass M∆ of the isolated horizon coincides with the
ADM massM defined at infinity. In general,M∆ is the difference betweenM and
the ‘radiative energy’ of space-time. However, as in the static case,M∆ continues
to include the energy in the ‘Coulombic’ fields —i.e., the ‘hair’— associated with
the charges of the horizon, even though it is defined locally at ∆. This is a subtle
property but absolutely essential if the first law is to hold in the form given
above. To my knowledge, none of the quasi-local definitions of mass shares this
property with M∆. Finally, isolated horizons provide an appropriate framework
for discussing the ‘physical process version’ of the first law for processes in which
the charge of the black hole changes. The standard strategy of using the ADM
mass in place of M∆ appears to run in to difficulties [12] and, as far as I am
aware, this issue was never discussed in the literature in the usual context of
context of static event horizons.

3.3 Quantum geometry in the bulk

In this sub-section, I will make a detour to introduce the basic ideas we need
from quantum geometry. For simplicity, I will ignore the presence of boundaries
and focus just on the structure in the bulk.

There is a common expectation that the continuum picture of space-time,
used in macroscopic physics, would break down at the Planck scale. This ex-
pectation has been shown to be correct within a non-perturbative, background
independent approach to quantum gravity (see [7] and references therein).3 The
approach is background independent in the sense that, at the fundamental level,
there is neither a classical metric nor any other field to perturb around. One only
has a bare manifold and all fields, whether they represent geometry or matter,
are quantum mechanical from the beginning. Because of the subject matter now
under consideration, I will focus on geometry.

Quantum mechanics of geometry has been developed systematically over the
last three years and further exploration continues [7]. The emerging theory is ex-
pected to play the same role in quantum gravity that differential geometry plays
in classical gravity. That is, quantum geometry is not tied to a specific gravita-
tional theory. Rather, it provides a kinematic framework or a language to formu-
late dynamics in a large class of theories, including general relativity and super-
gravity. In this framework, the fundamental excitations of gravity/geometry are
one-dimensional, rather like ‘polymers’ and the continuum picture arises only
as an approximation involving coarse-graining on semi-classical states. The one
dimensional excitations can be thought of as flux lines of area [21]. Roughly,
each line assigns to a surface element it crosses one Planck unit of area. More

3 The necessity of a non-perturbative approach is illustrated by the following simple
example. The energy levels of a harmonic oscillator are discrete. However, it would
be difficult to see this fundamental discreteness if one were to solve the problem
perturbatively, starting from the Hamiltonian of a free particle. Similarly, if one
begins with a continuum background geometry and then tries to incorporate the
quantum effects perturbatively, it would be difficult to unravel discreteness in the
spectra of geometric operators such as areas of surfaces or volumes of regions.
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precisely, the area assigned to a surface is obtained by algebraic operations (in-
volving group-representation theory) at points where the flux lines intersect the
surface. As is usual in quantum mechanics, quantum states of geometry are rep-
resented by elements of a Hilbert space [20]. I will denote it by Hbulk. The basic
object for spatial Riemannian geometry continues to be the triad, but now rep-
resented by an operator(-valued distribution) on Hbulk [21]. All other geometric
quantities —such as areas of surfaces and volumes of regions— are constructed
from the triad and represented by self-adjoint operators on Hbulk. The eigen-
values of all geometric operators are discrete; geometry is thus quantized in the
same sense that the energy and angular momentum of the hydrogen atom are
quantized [21].

There is however, one subtlety: there is a one-parameter ambiguity in this
non-perturbative quantization [22]. The parameter is positive, labeled γ and
called the Immirzi parameter. This ambiguity is similar to the θ ambiguity in
the quantization of Yang-Mills theories. For all values of γ, one obtains the same
classical theory, expressed in different canonical variables. However, quantiza-
tion leads to a one-parameter family of inequivalent representations of the basic
operator algebra. In particular, in the sector labeled by γ the spectra of the triad
—and hence, all geometric— operators depend on γ through an overall multi-
plicative factor. Therefore, while the qualitative features of quantum geometry
are the same in all γ sectors, the precise eigenvalues of geometric operators
vary from one sector to another. The γ-dependence itself is simple —effectively,
Newton’s constant G is replaced by γG in the γ-sector. Nonetheless, to obtain
unique predictions, it must be eliminated and this requires an additional input.
Note however that since the ambiguity involves a single parameter, as with the θ
ambiguity in QCD, one judiciously chosen experiment would suffice to eliminate
it. Thus, for example, if we could measure the quantum of area , i.e., smallest
non-zero value that area of any surface can have, we would know which value of
γ is realized in Nature. Any further experiment would then be a test of the the-
ory. Of course, it is not obvious how to devise a feasible experiment to measure
the area quantum directly. However, we will see that it is possible to use black
hole thermodynamics to introduce suitable thought experiments. One of them
can determine the value of γ and the other can then serve as consistency checks.

3.4 Quantum geometry of horizon and entropy

Ideas introduced in the last three sub-sections were combined and further devel-
oped to systematically analyze the quantum geometry of isolated horizons and
calculate their statistical mechanical entropy in [10,15,16]. (For earlier work, see
[23,24].) In this discussion, one is interested in space-times with an isolated hori-
zon with fixed values ao, Qo and φo of the intrinsic horizon parameters, the area,
the electric charge, and the value of the dilaton field.

The presence of an isolated horizon ∆ manifests itself in the classical theory
through boundary conditions. As usual, we can use some of the boundary condi-
tions to eliminate certain gauge degrees of freedom at ∆. The remaining, ‘true’
degree of freedom are coded in an Abelian connection V defined intrinsically on
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∆. V is constructed from the self-dual spin connection in the bulk. It is interest-
ing to note that there are no surface degrees of freedom associated with matter:
Given the intrinsic parameters of the horizon, boundary conditions imply that
matter fields defined intrinsically on ∆ can be completely expressed in terms
of geometrical (i.e., gravitational) fields at ∆. One can also see this feature in
the symplectic structure. While the gravitational symplectic structure acquires
a surface term at ∆, matter symplectic structures do not. We will see that this
fact provides a simple explanation of the fact that, among the set of intrinsic
parameters natural to isolated horizons, entropy depends only on area.

Of particular interest to the present Hamiltonian approach is the pull-back
of V to the 2-sphere S∆ (orthogonal to �a and na) at which the space-like 3-
surfaces M used in the phase space construction intersect ∆. (See figure 1(a).)
This pull-back —which I will also denote by V for simplicity— is precisely the
U(1) spin-connection of the 2-sphere S∆. Not surprisingly, the Chern-Simons
symplectic structure for the non-Abelian self-dual connection that I referred to in
Section 3.2 can be re-expressed in terms of V . The result is unexpectedly simple
[10]: the surface term in the total symplectic structure is now just the Chern-
Simons symplectic structure for the Abelian connection V ! The only remaining
boundary condition relates the curvature F = dV of V to the triad vectors. This
condition is taken over as an operator equation. Thus, in the quantum theory,
neither the intrinsic geometry nor the curvature of the horizon are frozen; neither
is a classical field. Each is allowed to undergo quantum fluctuations but because
of the operator equation relating them, they have to fluctuate in tandem.

To obtain the quantum description in presence of isolated horizons, there-
fore, one begins with a fiducial Hilbert space H = Hbulk ⊗Hsurface where Hbulk

is the Hilbert space associated with the bulk polymer geometry and Hsurface is
the Chern-Simons Hilbert space for the connection V .4 The quantum boundary
condition says that only those states in H are allowed for which there is a precise
intertwining between the bulk and the surface parts. However, because the re-
quired intertwining is ‘rigid’, apriori it is not clear that the quantum boundary
conditions would admit any solutions at all. For solutions to exist, there has
to be a very delicate matching between certain quantities on Hbulk calculated
from the bulk quantum geometry and certain quantities on Hsurface calculated
from the Chern-Simons theory. The precise numerical coefficients in the surface
calculation depend on the numerical factor in front of the surface term in the
symplectic structure (i.e., on the Chern-Simons level k) which is itself determined
in the classical theory by the coefficient in front of the Einstein-Hilbert action
and our classical boundary conditions. Thus, the existence of a coherent quan-
tum theory of isolated horizons requires that the three corner stones —classical
general relativity, quantum mechanics of geometry and Chern-Simons theory—

4 In the classical theory, all fields are smooth, whence the value of any field in the bulk
determines its value on ∆ by continuity. In quantum theory, by contrast, the measure
is concentrated on generalized fields which can be arbitrarily discontinuous, whence
surface states are no longer determined by bulk states. A compatibility relation does
exist but it is introduced by the quantum boundary condition. It ensures that the
total state is invariant under the permissible internal rotations of triads.
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be united harmoniously. Not only should the three conceptual frameworks fit
together seamlessly but certain numerical coefficients, calculated independently
within each framework, have to match delicately. Fortunately, these delicate con-
straints are met and there the quantum boundary conditions admit a sufficient
number of solutions.

Because we have fixed the intrinsic horizon parameters, is is natural to con-
struct a microcanoniocal ensemble from eigenstates of the corresponding oper-
ators with eigenvalues in the range (qo − δq, qo + δq) where δq is very small
compared to the fixed value qo of the intrinsic parameters. Since there are no
surface degrees of freedom associated with matter fields, let us focus on area,
the only gravitational parameter available to us. Then, we only have to consider
those states in Hbulk whose polymer excitations intersect S∆ in such a way that
they endow it with an area in the range (ao − δa, ao + δa) where δa is of the
order of �2Pl (with �Pl, the Planck length). Denote by P the set of punctures that
any one of these polymer states makes on S∆, each puncture being labeled by
the eigenvalue of the area operator at that puncture. Given such a bulk state,
the quantum boundary condition tells us that only those Chern-Simons surface
states are allowed for which the curvature is concentrated at punctures and the
range of allowed value of the curvature at each puncture is dictated by the area
eigenvalue at that puncture. Thus, for each P , the quantum boundary condition
picks out a sub-space HP

surface of the surface Hilbert space Hsurface. Thus, the
quantum geometry of the isolated horizon is effectively described by states in

Hphys
surface =

⊕
P

HP
surface

as P runs over all possible punctures and area-labels at each puncture, com-
patible with the requirement that the total area assigned to S∆ lie in the given
range.

One can visualize this quantum geometry as follows. Given any one state in
HP

surface, the connections V are flat everywhere except at the punctures and the
holonomy around each puncture is fixed. Using the classical interpretation of V
as the metric compatible spin connection on S∆ we conclude that, in quantum
theory, the intrinsic geometry of the horizon is flat except at the punctures.
At each puncture, there is a deficit angle, whose value is determined by the
holonomy of V around that puncture. Since each puncture corresponds to a
polymer excitation in the bulk, polymer lines can be thought of as ‘pulling’ on
the horizon, thereby producing deficit angles in an otherwise flat geometry (see
figure 3). Each deficit angle is quantized and the angles add up to 2π as in
a discretized model of a 2-sphere geometry. Thus, the quantum geometry of an
isolated horizon is quite different from its smooth classical geometry. In addition,
of course, each polymer line endows the horizon with a small amount of area and
these area elements add up to provide the horizon with total area in the range
(a0 − δa, ao + δa). Thus, one can intuitively picture the quantum horizon as
the surface of a large, water-filled balloon which is suspended with a very large
number of wires, each exerting a small tug on the surface at the point of contact
and giving rise to a ‘conical singularity’ in the geometry.
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(a)
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γ
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Fig. 3. (a) Quantum geometry around an isolated horizon. The i-th polymer excita-
tion of the bulk geometry carries a 1/2-integer label ji. Upon puncturing the horizon
2-sphere S∆, it induces 8πγ

p
ji(ji + 1) Planck units of area. At each puncture, in the

intrinsic geometry of S∆, there is a deficit angle of 2πmi/k, where mi is a 1/2-integer
in the interval [−ji, ji] and k the ‘level’ of the Chern-Simons theory. (b) Magni-
fied view of a puncture pi. The holonomy of the U(1) connection V around a loop γ
surrounding any puncture pi determines the deficit angle at pi. Each deficit angle is
quantized and they add up to 2π.
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Finally, one can calculate the entropy of the quantum micro-canonical en-
semble. We are not interested in the full Hilbert space since the ‘bulk-part’
includes, e.g., states of gravitational radiation and matter fields far away from
∆. Rather, we wish to consider only the states of the isolated horizon ∆ itself.
Therefore, we are led to trace over the ‘bulk states’ to construct a density ma-
trix ρIH describing a maximum-entropy mixture of surface states for which the
intrinsic parameters lie in the given range. The statistical mechanical entropy is
then given by S = −Tr ρIH ln ρIH. As usual, the trace can be obtained simply by
counting states, i.e., by computing the dimension N of Hphys

surface. We have:

N = exp (
γo
γ

ao
4�2Pl

) where γo =
ln 2

π
√
3

Thus, the number of micro-states does go exponentially as area. This is a non-
trivial result. For example if, as in the early treatments, one ignores boundary
conditions and the Chern-Simons term in the symplectic structure and does a
simple minded counting, one finds that the exponent in N is proportional to√
ao. However, our numerical coefficient in front of the exponent depends on the

Immirzi parameter γ. The appearance of γ can be traced back directly to the
fact that, in the γ-sector of the theory, the area eigenvalues are proportional
to γ. Thus, because of the quantization ambiguity, the γ-dependence of N is
inevitable.

We can now adopt the following ‘phenomenological’ viewpoint. In the infinite
dimensional space IH, one can fix one space-time admitting isolated horizon, say
the Schwarzschild space-time with mass Mo >> MPl, (or, the de Sitter space-
time with the cosmological constant Λo << 1/�2Pl). For agreement with semi-
classical considerations, in these cases, entropy should be given by S = (ao/4�

2
Pl)

which can happen only in the sector γ = γo of the theory. The theory is now
completely determined and we can go ahead and calculate the entropy of any
other isolated horizon in this theory. Clearly, we obtain:

SIH =
1

4

ao
�2Pl

for all isolated horizons. Furthermore, in this γ-sector, the statistical mechan-
ical temperature of any isolated horizon is given by Hawking’s semi-classical
value κ~/2π [8,23]. Thus, we can do one thought experiment —observe the tem-
perature of a large black black hole from far away— to eliminate the Immirzi
ambuguity and fix the theory. This theory then predicts the correct entropy and
temperature for all isolated horizons in IH with ao >> �2Pl.

The technical reason behind this univerality is trivial. However, the concep-
tual argument is not because it is quite non-trivial that N depends only on
the area and not on values of other charges. Furthermore, the space IH is in-
finite dimensional and it is not apriori obvious that one should be able to give
a statistical mechanical account of entropy of all isolated horizons in one go.
Indeed, values of fields such as Ψ4 and φ2 can be vary from one isolated horizon
to another even when they have same intrinsic parameters. This freedom could
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well have introduced obstructions, making quantization and entropy calculation
impossible. That this does not happen is related to but independent of the fact
that this feature did not prevent us from extending the laws of mechanics from
static event horizons to general isolated horizons.

4 Discussion

Perhaps the most pleasing aspect of this analysis is the existence of a single
framework to encompass diverse ideas at the interface of general relativity, quan-
tum theory and statistical mechanics. In the classical domain, this framework
generalizes laws of black hole mechanics to physically more realistic situations.
At the quantum level, it provides a detailed description of the quantum geometry
of horizons and leads to a statistical mechanical calculation of entropy. In both
domains, the notion of isolated horizons provides an unifying arena enabling
us to handle different types of situations —e.g., black holes and cosmological
horizons— in a single stroke. In the classical theory, the same line of reason-
ing allows one to establish the zeroth and first laws for all isolated horizons.
Similarly, in the quantum theory, a single procedure leads one to quantum ge-
ometry and entropy of all isolated horizons. By contrast, in other approaches,
fully quantum mechanical treatments seem to be available only for stationary
black holes. Indeed, to my knowledge, even in the static case, a complete statis-
tical mechanical calculation of the entropy of cosmological horizons has not been
available. Finally, our extension of the standard Killing horizon framework sheds
new light on a number of issues, particularly the notion of mass of associated to
an horizon and the physical process version of the first law [12].

However, the framework presented here is far from being complete and pro-
vides promising avenues for future work. First, while some of the motivation
behind our approach is similar to the considerations that led to the interesting
series of papers by Brown and York, not much is known about the relation be-
tween the two frameworks. It would be interesting to explore this relation, and
more generally, to relate the isolated horizon framework to the semi-classical
ideas based on Euclidean gravity. Second, while the understanding of the micro-
states of an isolated horizon is fairly deep by now, work on a quantum gravity
derivation of the Hawking radiation has just begin [17]. Using general arguments
based on Einstein’s A and B coefficients [1] and the known micro-states of an
isolated horizon, one can argue that the envelope of the line spectrum emitted
by a black hole should be thermal. However, further work is necessary to make
sure that the details are correct. As far as the zeroth and first laws and the
entropy calculation are concerned, the obvious open problem is the extension to
incorporate non-zero angular momentum. As indicated in [10,12], the extension
of the classical theory should be relatively straightforward, although it may well
pose some technical challenges. To incorporate rotation, only one condition (on
spin-coefficients associated with na) in the present definition of non-rotating iso-
lated horizon needs to be weakened. Work has already begun on this problem.
The extension of the entropy calculation, on the other hand, may turn out to
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be trickier for it may well require a new technical insight. On a long range, the
outstanding challenge is to obtain a deeper understanding of the Immirzi ambi-
guity and the associated issue of renormalization of Newton’s constant. For any
value of γ, one obtains the ‘correct’ classical limit. However, as far as black hole
thermodynamics is concerned, it is only for γ = γo that one seems to obtain
agreement with quantum field theory in curved space-times. Is this value of γ
robust? Can one make further semi-classical checks? A pre-requisite for this in-
vestigation is a better handle on the issue of semi-classical states. A major effort
will soon be devoted to this issue.

Let me conclude with a comparison between the entropy calculation in this
approach and those performed in string theory. First, there are some obvious
differences. In the present approach, one begins with the sector of the classi-
cal theory containing space-times with isolated horizons and then proceeds with
quantization. consequently, one can keep track of the physical, curved geome-
try. In particular, one can see that, as required by physical considerations, the
degrees of freedom which account for entropy can interact with the physical
exterior of the black hole. In string theory, by contrast, actual calculations are
generally performed in flat space and non-renormalization arguments and/or du-
ality conjectures are then invoked to argue that the results so obtained refer to
macroscopic black holes. Therefore, relation to the curved space geometry and
physical meaning of the degrees of freedom which account for entropy is rather
obscure. More generally, lack of direct contact with physical space-time can also
lead to practical difficulties while dealing with macroscopic situations. For ex-
ample, in string theory, it may be difficult to account for the entropy normally
associated with de Sitter horizons. On the other hand, in the study of genuinely
quantum, Planck size black holes, this ‘distance’ from the curved space-time
geometry may turn out to be a blessing, as classical curved geometry will not
be an appropriate tool to discuss physics in these situations. In particular, a
description which is far removed from space-time pictures may be better suited
in the discussion of the last stages of Hawking evaporation and the associated
issue of ‘information loss’.

Another advantage of the string-theory approach is that entropy calculations
have been carried out in a number of space-time dimensions. By contrast, so far
the framework presented here is applicable only to four dimensions.5 Also, our
quantization procedure has an inherent ambiguity which trickles down to the
entropy calculation. By contrast, calculations in string theory are free of this
problem. On the other hand, almost all detailed calculations in string theory
have been carried out only for (a sub-class of) extremal or near-extremal black
holes. While these black holes are especially simple to deal with mathematically,
unfortunately, they are not of direct relevance to astrophysics, i.e., to the phys-
ical world we live in. More recently, using the Maldecena conjecture, stringy
calculations have been extended to non-extremal black holes with R2

Sch >> 1/Λ,
where RSch is the Schwarzschild radius. However, the numerical coefficient in

5 However, an extension of the underlying non-perturbative framework to higher di-
mensions was recently proposed by Freidel, Krasnov and Puzzio.
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front of the entropy turns out to be incorrect and it is not yet clear whether
inclusion of non-Abelian interactions, which are ignored in the current calcula-
tions, would restore the numerical coefficient to its correct value. Furthermore,
it appears that a qualitatively new strategy may be needed to go beyond the
R2

Sch >> 1/Λ approximation. Finally, as in other results based on the Maldecena
conjecture, the underlying boundary conditions at infinity are quite unphysical
since the radius of the compactified dimensions is required to equal the cosmo-
logical radius. Hence the relevance of these mathematically striking results to
our physical world remains unclear. In the current approach, by contrast, ordi-
nary, astrophysical black holes in the physical, four space-time dimensions are
included from the beginning.

In spite of this differences, there are some striking similarities. Our polymer
excitations resemble stings. Our horizon looks like a ‘gravitational 2-brane’. Our
polymer excitations ending on the horizon, depicted in figure 3, closely resemble
strings with end points on a membrane. As in string theory, our ‘2-brane’ carries
a natural gauge field. Furthermore, the horizon degrees of freedom arise from this
gauge field. These similarities seem astonishing. However, a closer look brings
out a number of differences as well. In particular, being horizon, our ‘2-brane’
has a direct interpretation in terms of the curved space-time geometry and our
U(1) connection is the gravitational spin-connection on the horizon. Nonetheless,
it may well be that, when quantum gravity is understood at a deeper level, it
will reveal that the striking similarities are not accidental, i.e., that the two
decriptions are in fact closely related.
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Old and New Processes of Vorton Formation

Brandon Carter1

D.A.R.C., Observatoire de Paris 92 Meudon, France

Abstract. Among the likely consequences of cosmic string formation, one of the most
important possibilities is the formation of equilibrium configurations, known as vortons,
for current carrying loops. This article provides a concise review of available quanti-
tative estimates of the vorton population that would be produced in various cosmic
string scenarios. Attention is drawn to previously unconsidered mechanisms that might
give rise to much more prolific vorton formation that has been envisaged hitherto.

This review is an updated version of a previous very brief overview[1] of the
theory of vortons, meaning equilibrium states of cosmic string loops, and of the
cosmological processes by which they can be produced in various scenarios. The
main innovation here is to draw attention to the possibility of greatly enhanced
vorton formation in cases for which the cosmic string current is of the strictly
chiral type [2] that arises naturally in certain kinds of supersymmetric field
theory.

It is rather generally accepted[3] that among the conceivable varieties of local
topological defects of the vacuum that might have been generated at early phase
transitions, the vortex type defects describable on a macrosopic scale as cosmic
strings are the kind that is most likely to actually occur – at least in the post
inflationary epoch – because the other main categories, namely walls and local
monopoles, would produce a catastrophic cosmological mass excess. Even a single
wall stretching accross a Hubble radius would by itself be too much, while in
the case of monopoles it is their collective density that would be too high unless
the relevant phase transition occurred at an energy far below that of the G.U.T.
level, a possibility that is commonly neglected on the grounds that no monopole
formation occurs in the usual models for the transitions in the relevant range,
of which the most important is that of electroweak symmetry breaking.

The case of cosmic strings is different. One reason is that – although they are
not produced in the standard electroweak model – strings are indeed produced
at the electroweak level in many of the commonly considered (e.g. supersymmet-
ric) alternative models. A more commonly quoted reason why the case of strings
is different, even if they were formed at the G.U.T level, is that – while it may
have an important effect in the short run as a seed for galaxy formation – such a
string cannot be cosmologically dangerous just by itself, while a distribution of
cosmic strings is also cosmologically harmless because (unlike “local” as opposed
to “global” monopoles) they will ultimately radiate away all their energy and
disappear. However while this latter consideration is indeed valid in the case of
ordinary Goto-Nambu type strings, it was pointed out by Davis and Shellard[4]
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that it need not apply to “superconducting” current-carrying strings of the kind
originally introduced by Witten[5]. This is because the occurrence of stable cur-
rents allows loops of string to be stabilized in states known as “vortons”, so that
they cease to radiate.

The way this happens is that the current, whether timelike or spacelike,
breaks the Lorentz invariance along the string worldsheet [6–9], thereby leading
to the possibility of rotation, with velocity v say. The centrifugal effect of this
rotation, may then compensate the string tension T in such a way as to produce
an equilibrium configuration, i.e. what is known as a vorton, in which

T = v2U , (1)

where U is the energy per unit length in the corotating rest frame[10,11]. Such
a vorton state will be stable, at least classically, if it minimises the energy for
given values of the pair of conserved quantities characterising the current in the
loop, namely the phase winding number N say, and the corresponding particle
number Z say, whose product determines the mass M of the ensuing vorton
state according to a rough order of magnitude formula of the form

M ≈ |NZ|1/2mx (2)

where mx is the relevant Kibble mass, whose square is the zero current limit
value of both T and U . If the current is electromagnetically coupled, with charge
coupling constant e, then there will be a corresponding vorton charge Q = Ze.

Whereas the collective energy density of a distribution of non-conducting
cosmic strings will decay in a similar manner to that of a radiation gas, in
contrast for a distribution of relic vortons the energy density will scale like that of
ordinary matter. Thus, depending on when and how efficiently they were formed,
and on how stable they are in the long run, such vortons might eventually come
to dominate the density of the universe. It has been rigorously established[12–
14] that circular vorton configurations of this kind will commonly (though not
always) be stable in the dynamic sense at the classical level, but very little is
known so far about non-circular configurations or about the question of stability
against quantum tunnelling effects, one of the difficulties being that the latter
is likely to be sensitively model dependent.

In the earliest crude quantitative estimates[4,15] of the likely properties of a
cosmological vorton distribution produced in this way, it was assumed not only
that the Witten current was stable against leakage by tunnelling, but also that
the mass scale mσ characterising the relevant carrier field was of the same order
of magnitude as the Kibble mass scale mx characterising the string itself, which
will normally be given approximately by the mass of the Higgs field responsible
for the relevant vacuum symmetry breaking. The most significant development
in the more detailed investigations carried out more recently[16,17] was the ex-
tension to cases in which mσ is considerably smaller than mx. A rather extreme
example that immediately comes to mind is that for which mx is postulated to
be at the G.U.T. level, while mσ is at the electroweak level in which case it was
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found that the resulting vorton density would be far too low to be cosmologically
significant.

The simplest scenarios are those for which (unlike the example just quoted)
the relation

√
mσ

mx
∼> 1 (3)

is satisfied in dimensionless Planck units as a rough order of magnitude inequal-
ity. In this case the current condensation would have ocurred during the regime
in which (as pointed out by Kibble[18] in the early years of cosmic string theory)
the dynamics was dominated by friction damping. Under these circumstances,
acording to the standard picture[3], the string distribution will consist of wiggles
and loops of which the most numerous will be the shortest, characterised by a
length scale ξ say below which smaller scale structure will have been smoothed
out by friction damping. The number density n of these smallest and most nu-
merous loops will be given by the (dimensionally obvious) formula

n ≈ 1

ξ3
, (4)

in which the smoothing length scale ξ itself is given by

ξ ≈
√
tτ , (5)

where τ is the relevant friction damping timescale and t is the cosmological
time, which, using Planck units, will be expressible in terms of the cosmological
temperature Θ by

t ≈ 1

Θ2
, (6)

in the radiation dominated epoch under consideration. According to the usual de-
scription of the friction dominated epoch [19,3], the relevant damping timescale
will be given by

τ ≈ m 2
x

Θ3
, (7)

from which it can be seen that the smoothing lengthscale ξ that characterises
the smallest and most numerous string loops will be given roughly by the well
known formula

ξ ≈ mx

Θ5/2
. (8)

At the time of condensation of the current carrier field on the strings, when
the temperature reaches a value Θ ≈ mσ, the corresponding thermal fluctuation
wavelength λ will be given by

λ ≈ 1

mσ
. (9)
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Taken around the circumference, of order ξ, of a typical small string loop, the
number of such fluctuation wavengths will be of order ξ/λ. In the cases consid-
ered previously [16,17] it was assumed that the fluctuations would be randomly
orientated and would therefore tend to cancel each other out so that, by the
usual kind of random walk process the net particle and winding numbers taken
around the loop as a whole would be expected to be of the order of the square
root of this number of wavelengths, i.e. one would typically obtain

N ≈ Z ≈
√

ξ

λ
. (10)

However a new point to which I would like to draw attention here is that the
random walk cancellation effect will not apply in case for which the current is
of strictly chiral type so that the string dynamics is of the kind whose special
integrability properties have recently been pointed out [2]. This case arises [5]
when the string current is attributable to (necessarily uncharged) fermionic zero
modes moving in an exlusively rightwards (or exclusively leftwards) direction.
In such a case, the possibility of cancellation between left moving and right
moving fluctuations does not arise, so that (as in the ordinary kind of diode
rectifier circuit used for converting alternating current to direct curent) there
is an effective filter ensuring that the fluctuations induced on the string will all
have the same orientation. In such a case only one of the quantum numbers in the
formula (2) will be independent, i.e. they will be restricted by a relation of the
form N = Z, and their expected value will be of the order of the total number
of fluctuation wavelengths round the loop (not just the square root thereof as
in the random walk case). In such a strictly chiral case the formula (2) should
therefore be evaluated using an estimate of the form

N = Z ≈ ξ

λ
, (11)

instead of (10)
Whereas even smaller loops will have been entirely destroyed by the friction

damping process, those that are present at the time of the current condensation
can survive as vortons, whose number density will be reduced in inverse pro-
portion to the comoving volume, i.e. proportionally to Θ3, relative to the initial
number density value given by (4) when Θ ≈ mσ. Thus (assuming the current
on each string is strictly conserved during the subsequent evolution) when the
cosmological temperature has fallen to a lower value Θ � mσ, the expected
number density n of the vortons will be given as a constant fraction of the cor-
responding number density ≈ Θ3 of black body photons by the rough order of
magnitude formula

n

Θ3
≈

(√mσ

mx

)3

m 3
σ . (12)

In the previously considered cases [16,17], for which the random walk formula
(10) applies, the typical value of the quantum numbers of vortons in the resulting
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population will be given very roughly by

N2 ≈ Z2 ≈ mx

m
3/2
σ

. (13)

According to (2), this implies a typical vorton mass given by

M ≈
( mx√

mσ

)3/2

, (14)

which, in view of (3), will never exceed the Planck mass. It follows in this case
that, in order to avoid producing a cosmological mass excess, the value of mσ in
this formula should not exceed a limit that works out to be of the order of 10−9,
and the limit is even be smaller, mσ � 10−11, when the two scales mσ and mx

are comparable.
The new point to which I wish to draw attention here is that for the strictly

chiral case, as characterised by (11) instead of (10), the formula (2) for the vorton
mass gives a typical value

M ≈ m 2
x

m
3/2
σ

, (15)

which is greater than what is given by the usual formula (14) by a factor

m
1/2
x m

−3/4
σ . Although the vorton to photon number density ratio (12) will not

be affected, the corresponding mass density ρ = Mn of the vorton distribution

will be augmented by the same factorm
1/2
x m

−3/4
σ . This augmentation factor will

be expressible simply as m
−1/4
σ when the two scales mσ and mx are compara-

ble, in which case the requirement that a cosmological mass excess should be
avoided leads to the rather severe limit mσ ∼< 10−14. This mass limit works out
to be of the order of a hundred TeV, which is within the range that is commonly
envisaged for the electroweak symmetry breaking transition.

The foregoing conclusion can be construed as meaning that if strictly chiral
current carrying strings were formed (within the framework of some generalised,
presumably supersymmetric, version of the Standard electroweak model) during
the electroweak symmetry breaking phase transition, then the ensuing vorton
population might conceivably constitute a significant fraction of the cosmolog-
ical dark matter distribution in the universe. Although, according to (12), the
number density of such chiral vortons would be rather low, their typical mass,
as given according to (15) by M ≈ √

mσ would be rather large, about 10−7 in
Planck units, which works out as about 109 TeV.

An alternative kind of scenario that naturally comes to mind is that in which
the cosmic strings themselves were formed at an energy scale mx in the GUT
range (of the order of 10−3 in Planck units) but in which the current did not
condense on the string until the thermal energy scale had dropped to a value
mσ that was nearer the electroweak value (below the order of 10−14 in Planck
units). Since this very much lower condensation temperature would be outside
the friction dominated range characterised by (3), the reasonning summarised
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above would not be applicable. Preliminary evaluations of the (relatively ineffi-
cient) vorton production that would arise from current condensation after the
end of the friction dominated period are already available [17] for the usual ran-
dom walk case, but analogous estimates for aumentation that might arise in the
strictly chiral case have not yet been carried out. The reason why it is not so easy
to evaluate the consequences of current condensation after the end of the fric-
tion dominated epoch (when radiation damping becomes the main dissipation
mechanism) is that most of the loops present at the time of the current con-
densation would have been be too small to give vortons stable against quantum
decay processes, a requirement which imposes a lower limit

M ∼>
m 2

x

mσ
(16)

on the mass of a viable vorton. This condition is satisfied automatically by the
masses estimated in the manner described above for vortons formed by con-
densation during the friction dominated era characterised by (3). On the other
hand when (3) is not satisfied – in which case the lower limit (16) will evidently
exceed the Planck mass – then the majority of loops present at the time of the
carrier condensation phase transition at the temperature Θ ≈ mσ will not ac-
quire the rather large quantum number values that would be needed to make
them ultimately viable as vortons. It is not at all easy to obtain firmly conclusive
estimates of the small fraction that will satisfy this viability condition. However
it should not be too difficult to carry out an adaptation to the strictly chiral
case of the kind of tentative provisional estimates (based on simplifying assump-
tions whose confirmation will require much future work) that have already been
provided [17] for the generic case of currents built up by the usual random walk
process.

The possibility of strictly chiral current formation is not the only mechanism
whereby vorton formation might conceivably be augmented relative to what was
predicted on the basis [17] of the previous estimates, which took no account
of electromagnetic effects. There cannot be any electromagnetic coupling in the
strictly chiral case [2], and in other cases where electromagnetic coupling will be
typically be present it has been shown [20] that it will usually have only a minor
perturbing effect on the vorton equilibrium states. However it has recently been
remarked [21] that even though the averaged “direct” current that is relevant
for vorton formation may be small, the local “alternating” current can have a
sufficiently large amplitude, I say, for its interaction with the surrounding black
body radiation plasma to provide the dominant friction damping mechanism,
with a damping time scale that instead of (7) will be given in rough order of
magnitude by

τ ≈ m 2
x

IΘ2
. (17)

As can be seen from (6), this means that instead of being restricted to the very
early epoch when cosmological temperature was above Kibble limit value, i.e.
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when Θ ∼>
√
mx, the period of friction domination can be extended indefinitely

if the current amplitude satisfies

I ∼> m 2
x , (18)

a requirement that is easily compatible with Witten’s [5] bosonic current satura-
tion bound I ∼< emx (where e � 1/

√
137 is the electromagnetic charge coupling

constant), and that is in most cases compatible even with the more severe limit
I ∼< emσ that applies in cases for which instead of arising as a bosonic conden-
sate, the current is due to femionic zero modes. Such a tendency to prolonga-
tion of friction dominance will presumably delay the decay of small scale loop
structure and so may plausibly be expected to augment the efficiency of vorton
formation in cases when mσ is below the limit given by (3), but a quantitative
estimate of just how large this effect is likely to be will require a considerable
amount of future work.

Despite the possibility that the effciency of vorton formation may have been
underestimated by previous work, it still seems unlikely that vortons can consti-
tute more than a small fraction of the missing matter in the universe. However
this does not mean that vortons could not give rise to astrophysically interesting
effects: in particular it has recently been suggested by Bonazzola and Peter[22]
that they might account for otherwise inexplicable cosmic ray events.

The author is grateful to many colleagues, particularly Patrick Peter and
Anne Davis, for helpful discussions on numerous occasions.
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Bernard de Wit and Ivan Herger

Institute for Theoretical Physics, Utrecht University
3508 TA Utrecht, Netherlands

Abstract. We give a pedagogical introduction to certain aspects of supersymmetric
field theories in anti-de Sitter space. Among them are the presence of masslike terms
in massless wave equations, irreducible unitary representations and the phenomenon
of multiplet shortening.

1 Introduction

Recently the study of field theory in anti-de Sitter space has received new im-
petus by the observation that the near-horizon geometry of black branes, which
usually involves anti-de Sitter space as a factor, is related to a field theory as-
sociated with the massless modes of open strings that are attached to a certain
number n of parallel Dirichlet branes, separated by small distances [1]. In certain
cases there thus exists a connection between superconformal field theories in flat
space, living on the boundary of an anti-de Sitter space-time, and gauged super-
gravity. The most striking example is that of N = 4 supersymmetric Yang-Mills
theory in four space-time dimensions with gauge group U(n), and IIB super-
gravity or superstring theory compactified on the five-dimensional sphere.

In these lectures we intend to give a pedagogical introduction to field theories
and supersymmetry in anti-de Sitter space. The subject is not new. Already in
the thirties Dirac considered wave equations that are invariant under the anti-de
Sitter group [2]. Later, in 1963, he discovered the ‘remarkable representation’
which is now known as the singleton [3]. Shortly afterwards there was a series of
papers by Fronsdal and collaborators discussing the representations of the anti-
de Sitter group [4]. Quantum field theory in anti-de Sitter space was studied, for
instance in [5,6]. Many new developments were inspired by the discovery that
gauged supergravity theories have ground states corresponding to anti-de Sitter
spacetimes [7–16]. This led to a study of the stability of these ground states
with respect to fluctuations of the scalar fields [17] as well as to an extended
discussion of supermultiplets in anti-de Sitter space [17–22].

In these notes we will be able to cover only a few of these topics. We restrict
ourselves to an introduction to supersymmetry in anti-de Sitter space and discuss
the presence of the so-called masslike terms in wave equations for various fields in
anti-de Sitter space. Then we will analyze the various irreducible representations
of the anti-de Sitter isometry group, using a variety of techniques, and at the end
we will consider the consequences for supermultiplets. We emphasize the issue
of multiplet shortening for both multiplets of given spin and for supermultiplets.

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 79−100, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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2 Supersymmetry and anti-de Sitter space

Let us start with simple supergravity in an unspecified number of space-time
dimensions. Two important terms in any supergravity Lagrangian are the Ein-
stein Lagrangian of general relativity and the Rarita-Schwinger Lagrangian for
the gravitino field(s),

L = −1
2eR(ω) − 1

2eψ̄µ Γ
µνρDν(ω)ψρ + · · · , (1)

where the covariant derivative on a spinor ψ reads

Dµ(ω)ψ =
(
∂µ − 1

4ωµ
ab Γab

)
ψ , (2)

and ωµ
ab is the spin-connection field defined such that the torsion tensor (or

a supercovariant version thereof) vanishes. The action corresponding the above
Lagrangian is locally supersymmetric up to terms cubic in the gravitino field.
The supersymmetry transformations contain the terms,

δeµ
a = 1

2 ε̄ Γ
aψµ , δψµ = Dµ(ω)ε . (3)

Extending this Lagrangian to a fully supersymmetric one is not always possible.
It may require additional fields and only when the dimension of space-time is
less than twelve does one know solutions for interacting theories.

Let us now include a cosmological term into the above Lagrangian as well as
a suitably chosen masslike term for the gravitino field,

L = −1
2eR(ω) − 1

2eψ̄µ Γ
µνρDν(ω)ψρ

+ 1
4g(d− 2)e ψ̄µΓ

µνψν + 1
2g

2(d− 1)(d− 2) e + · · · . (4)

As it turns out the corresponding action is still locally supersymmetric, up to
terms that are cubic in the gravitino field, provided that we introduce an extra
term to the transformation rules,

δeµ
a = 1

2 ε̄ Γ
aψµ , δψµ =

(
Dµ(ω) + 1

2gΓµ

)
ε . (5)

This demonstrates that, a priori, supersymmetry does not forbid a cosmological
term, but it must be of definite sign (at least, if the ground state is to preserve
supersymmetry). For a discussion see [23,24] and references therein. Again, to
construct a fully supersymmetric field theory is difficult and in this case there are
even stronger restrictions on the number of space-time dimensions than in the
case without a cosmological term. The Lagrangian (4) was first written down in
[25] in four space-time dimensions and the correct interpretation of the masslike
term was given in [26].

The Einstein equation corresponding to (4) reads (suppressing the gravitino
field),

Rµν − 1
2gµν R + 1

2g
2(d− 1)(d− 2) gµν = 0 , (6)
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which implies,

Rµν = g2(d− 1) gµν , R = g2d(d− 1) . (7)

Hence we are dealing with a d-dimensional Einstein space. The maximally sym-
metric solution of this equation is an anti-de Sitter space, whose Riemann cur-
vature equals

Rµν
ab = 2g2 eµ

[a eν
b] . (8)

This solution leaves all the supersymmetries intact just as flat Minkowski space
does. One can verify this directly by considering the supersymmetry variation of
the gravitino field and by requiring that it vanishes in the bosonic background.
This happens for spinors ε(x) satisfying(

Dµ(ω) + 1
2gΓµ

)
ε = 0 . (9)

Spinors satisfying this equation are called Killing spinors. Consequently also
(Dµ(ω)+ 1

2gΓµ)(Dν(ω)+ 1
2gΓν)ε must vanish. Antisymmetrizing this expression

in µ and ν then yields the integrability condition(
− 1

4Rµν
ab Γab + 1

2g
2 Γµν

)
ε = 0 , (10)

which is precisely satisfied in anti-de Sitter space.
Because anti-de Sitter space is maximally symmetric, it has 1

2d(d+ 1) isome-
tries which constitute the group SO(d − 1, 2). As we have just seen, anti-de
Sitter space is consistent with supersymmetry. This is just as for flat Minkowski
space, which has the same number of isometries but now corresponding to the
Poincaré group, and which is also consistent with supersymmetry. The two cases
are clearly related since flat space is obtained in the limit g → 0. The algebra of
the combined bosonic and fermionic symmetries will be called the anti-de Sitter
superalgebra. Note again that the above derivation is based on an incomplete
theory and in general one will need to introduce additional fields. The structure
of the anti-de Sitter algebra changes drastically for dimensions d > 7 (see [27]
and references cited therein). For d ≤ 7 the bosonic subalgebra coincides with the
anti-de Sitter algebra. There are N -extended versions, where we introduce N su-
persymmetry generators, each transforming as a spinor under the anti-de Sitter
group. These N generators transform under a compact group, whose generators
appear in the {Q, Q̄} anticommutator. For d > 7 the bosonic subalgebra can no
longer be restricted to the anti-de Sitter algebra and the algebra corresponding to
a compact group, but one needs extra bosonic generators that transform as high-
rank antisymmetric tensors under the Lorentz group. In contrast to this, there
exists an (N -extended) super-Poincaré algebra associated with flat Minkowski
space of any dimension, whose bosonic generators correspond to the Poincaré
group, possibly augmented with the generators of a compact group associated
with rotations of the supercharges.

It is possible to describe anti-de Sitter space as a hypersurface embedded
into a (d + 1)-dimensional embedding space. Denoting the extra coordinate
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of the embedding space by Y −, so that we have coordinates Y A with A =
−, 0, 1, 2, . . . , d− 1, this hypersurface is defined by

−(Y −)2 − (Y 0)2 + Y 2 = ηAB Y AY B = −g−2 . (11)

Obviously, the hypersurface is invariant under linear transformations that leave
the metric ηAB = diag (−,−,+,+, . . . ,+) invariant. These transformations con-
stitute the group SO(d − 1, 2). The 1

2d(d + 1) generators denoted by MAB act
on the embedding coordinates by

MAB = YA
∂

∂Y B
− YB

∂

∂Y A
, (12)

where we lower and raise indices by contracting with ηAB and its inverse ηAB.
It is now easy to evaluate the commutation relations for the MAB,

[MAB,MCD] = ηBC MAD − ηAC MBD − ηBD MAC + ηAD MBC . (13)

Anti-de Sitter space is a homogeneous space, which means that any two points
on it can be related via an isometry. It has the topology of S1 [time] × Rd−1.
When unwrapping S1 one finds the universal covering space denoted by CadS,
which has the topology of Rd. There are many ways to coordinatize anti-de
Sitter space but we will try to avoid using specific coordinates.

On spinors, the anti-de Sitter algebra can be realized by the following com-
bination of gamma matrices,

MAB = 1
2ΓAB =

{ 1
2Γab for A,B = a, b ,

1
2Γa for A = − , B = a

(14)

with a, b = 0, 1, . . . , d − 1. Our gamma matrices satisfy the Clifford property
{Γ a , Γ b} = 2 ηab 1, where ηab = diag (−,+, . . . ,+).

The commutator of two supersymmetry transformations yields an infinitesi-
mal general-coordinate transformation and a tangent-space Lorentz transforma-
tion. For example, we obtain for the vielbein,

[δ1, δ2] eµ
a = 1

2 ε̄2 Γ
a δ1ψµ − 1

2 ε̄1 Γ
a δ2ψµ

= Dµ(1
2 ε̄2 Γ

aε1) + 1
2g (ε̄2 Γ

abε1) eµb . (15)

Again we remind the reader of the fact that we are dealing with an incomplete
theory. For a complete theory the above result should hold uniformly on all the
fields (possibly modulo field equations). As before we have ignored terms pro-
portional to the gravitino field. In the anti-de Sitter background the vielbein is
left invariant by the combination of symmetries on the right-hand side. Conse-
quently the metric is invariant under these coordinate transformations and we
have the so-called Killing equation,

δgµν = Dµξν + Dνξµ = 0 , (16)
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where ξµ = 1
2 ε̄2 Γµε1 is a Killing vector and where ε1,2 are Killing spinors. Since

Dµξν = 1
2gε̄2Γµνε1, the right-hand side of (15) vanishes for this choice of su-

persymmetry parameters, and ξµ satisfies the Killing equation (16). As for all
Killing vectors, higher derivatives can be decomposed into the Killing vector and
its first derivative, e.g. Dµ(g ε̄2Γνρε1) = −g2 gµ[ρξν]. The Killing vector can be

decomposed into the 1
2d(d + 1) Killing vectors of the anti-de Sitter space.

For later use we record the anti-de Sitter superalgebra, which in addition to
(13) contains the (anti-)commutation relations,

{Qα, Q̄β} = − 1
2 (ΓAB)αβ M

AB ,

[MAB, Q̄α] = 1
2 (Q̄ ΓAB)α . (17)

As we alluded to earlier this algebra changes its form when considering N su-
persymmetry generators, which rotate under the action of a compact group.
The generators of this group will then also appear on the right-hand side of the
{Q, Q̄} anticommutator. Beyond d = 7 there are extra bosonic charges associ-
ated with higher-rank Lorentz tensors. However, in these lectures, we will mainly
be dealing with the case N = 1 and we will always assume that d ≤ 7.

3 Anti-de Sitter supersymmetry and masslike terms

In flat Minkowski space we know that all fields belonging to a supermultiplet
are subject to field equations with the same mass. This must be so because the
momentum operators commute with the supersymmetry charges, so that P2 is
a Casimir operator. For supermultiplets in anti-de Sitter space this is not longer
the case, so that masslike terms will not necessarily be the same for different fields
belonging to the same multiplet. This phenomenon will be illustrated below in a
specific example, namely a chiral supermultiplet in four spacetime dimensions.
Further clarification will be given later in sections 4 and 7.

A chiral supermultiplet in four spacetime dimensions consists of a scalar field
A, a pseudoscalar field B and a Majorana spinor field ψ. In anti-de Sitter space
the supersymmetry transformations of the fields are proportional to a spinor
parameter ε(x), which is a Killing spinor in the anti-de Sitter space, i.e. ε(x)
must satisfy the Killing spinor equation (9). We allow for two constants a and b
in the supersymmetry transformations, which we parametrize as follows,

δA = 1
4 ε̄ψ , δB = 1

4 iε̄γ5ψ ,

δψ = d(A + iγ5B)ε− (aA + ib γ5B)ε . (18)

The coefficient of the first term in δψ has been chosen such as to ensure that
[δ1, δ2] yields the correct coordinate transformation ξµDµ on the fields A and
B. To determine the constants a and b and the field equations of the chiral
multiplet, we consider the closure of the supersymmetry algebra on the spinor
field. After some Fierz reordering we find

[δ1, δ2]ψ = ξµDµψ + 1
16(a− b) ε̄2γ

abε1 γabψ − 1
2ξ

ργρ[dψ + 1
2 (a + b)ψ] . (19)



84 Bernard de Wit and Ivan Herger

We point out that derivatives acting on ε(x) occur in this calculation at an in-
termediate stage and should not be suppressed in view of (9). However, they
produce terms proportional to g which turn out to cancel in the above com-
mutator. Now we note that the right-hand side should constitute a coordinate
transformation and a Lorentz transformation, possibly up to a field equation.
Obviously, the coordinate transformation coincides with (15) but the correct
Lorentz transformation is only reproduced provided that a− b = 2g. If we now
denote the mass of the fermion by m = 1

2 (a + b), so that the last term is just
the Dirac equation with mass m, then we find

a = m + g , b = m− g . (20)

Consequently, the supersymmetry transformation of the ψ equals

δψ = d(A + iγ5B)ε−m(A + iγ5B)ε− g(A− iγ5B) ε , (21)

and the fermionic field equation equals (d + m)ψ = 0. The second term in
(21), which is proportional to m, can be accounted for by adding an auxiliary
field to the supermultiplet. The third term, which is proportional to g, can be
understood as a compensating S-supersymmetry transformation associated with
auxiliary fields in the supergravity sector (see, e.g., [28]). In order to construct
the corresponding field equations for A and B, we consider the variation of the
fermionic field equation. Again we have to take into account that derivatives on
the supersymmetry parameter are not equal to zero. This yields the following
second-order differential equations,

[✷adS + 2g2 −m(m− g)]A = 0 ,

[✷adS + 2g2 −m(m + g)]B = 0 ,

[✷adS + 3g2 −m2]ψ = 0 . (22)

The last equation follows from the Dirac equation. Namely, one evaluates (d −
m)(d + m)ψ, which gives rise to the wave operator ✷adS + 1

2 [d, d] − m2. The
commutator yields the Riemann curvature of the anti-de Sitter space. In an
anti-de Sitter space of arbitrary dimension d this equation then reads,

[✷adS + 1
4d(d− 1)g2 −m2]ψ = 0 , (23)

which, for d = 4 agrees with the last equation of (22). A striking feature of the
above result is that the field equations (22) all have different mass terms, in spite
of the fact that they belong to the same supermultiplet. Consequently, the role
of mass is quite different in anti-de Sitter space as compared to flat Minkowski
space. This will be elucidated later.

For future applications we also evaluate the Proca equation for a massive
vector field,

Dµ(∂µAν − ∂νAµ) −m2 Aν = 0 . (24)
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This leads to DµAµ = 0, so that the field equation reads D2Aν − [Dµ, Dν ]Aµ −
m2 Aν = 0 or, in anti-de Sitter space,

[✷adS + (d− 1)g2 −m2]Aµ = 0 . (25)

The g2 term in the field equations for the scalar fields can be understood from
the observation that the scalar D’Alembertian can be extended to a conformally
invariant operator (see e.g. [28]),

✷ +
1

4

d− 2

d− 1
R = ✷ + 1

4d(d− 2) g2 , (26)

which seems the obvious candidate for a massless wave operator for scalar fields.
Indeed, for d = 4, we do reproduce the g2 dependence in the first two equations
(22). Observe that the Dirac operator d is also conformally invariant and so is
the wave equation associated with the Maxwell field.

4 The quadratic Casimir operator

To make contact between the masslike terms in the wave equations and the
properties of the irreducible representations of the anti-de Sitter group, it is
important that we establish a relation between the D’Alembertian in anti-de
Sitter space and the quadratic Casimir operator C2 of the isometry group. We
will use C2 later on in our discussion of the unitary irreducible representations
of the anti-de Sitter algebra. In this section, we will use the (d+ 1)-dimensional
flat embedding space, introduced in section 2, to obtain such a relation for the
scalar D’Alembertian. In the embedding space, the latter is equal to to

✷d+1 = ηAB ∂

∂Y A

∂

∂Y B
. (27)

Denoting ∂A = ∂/∂Y A and Y 2 = ηABY
AY B, we straightforwardly derive an

expression for the quadratic Casimir operator associated with the anti-de Sitter
group SO(d− 1, 2),

C2 = − 1
2 M

AB MAB

= −Y A ∂B(YA∂B − YB∂A)

= −Y 2 ✷d+1 + Y A∂A (Y B∂B + d− 1) . (28)

The group SO(d− 1, 2) has more Casimir operators but the others are of higher
order in the generators and will not play a role in the following. We now introduce
different coordinates. We express the Y A in terms of coordinates XA, where
Xµ = xµ with µ = 0, 1, . . . , d− 1 and X− is defined by

X− = ρ =
√
−ηAB Y AY B . (29)

Furthermore, we require the ρ-dependence to be such that

Y A(X) = ρ yA(x) , (30)
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so that yA(x) yB(x) ηAB = −1. With this choice of coordinates one readily de-

rives the following relations (∂̂A = ∂/∂XA),

∂̂−Y A =
1

ρ
Y A , ∂̂−Y A ηAB Y B = −ρ ,

∂̂µY
A ηAB Y B = 0 , ∂̂µY

A ηAB ∂̂−Y B = 0 ,

∂̂− =
∂

∂ρ
= ∂̂−Y A ∂

∂Y A
=

1

ρ
Y A ∂A .

(31)

In the new coordinate system the metric is given by

ĝAB = ∂̂AY
C ηCD ∂̂BY

D =

(
ρ2gµν 0

0 −1

)
(32)

where gµν is the induced metric on the d-dimensional anti-de Sitter space (with

radius equal to unity). Note that ĝ ≡ det ĝAB = −ρ2d det gµν = −ρ2dg.

The D’Alembertian of the embedding space in the new coordinates is equal

to (observe that derivatives act on all quantities on the right)

✷d+1 =
1√
ĝ
∂̂A ĝAB

√
ĝ ∂̂B

=
1√−g

1

ρd

{
∂− ĝ−− ρd

√
−g ∂− + ∂µ g

µν ρd−2 √−g ∂ν
}

= − ∂2

∂ρ2
− d

ρ

∂

∂ρ
+ ρ−2 ✷adS , (33)

where ✷adS is the D’Alembertian for the anti-de Sitter space of unit radius.

Combining this with the expression (28) for the Casimir operator, we find

C2 = ρ2 ✷d+1 + ρ
∂

∂ρ

(
ρ

∂

∂ρ
+ d− 1

)
= ✷adS . (34)

Hence the ∂/∂ρ terms cancel as expected and the Casimir operator is just equal

to the normalized anti-de Sitter D’Alembertian with unit anti-de Sitter radius.

Note that this result cannot be used for other than spinless fields.

Let us now return to the wave equation for massless scalars (26). According

to this equation, massless s = 0 fields lead to representations whose Casimir

operator is equal to

C2 = − 1
4d(d− 2) . (35)

Indeed, later in these lectures we will see that the Casimir operator for a massless

s = 0 representation in four spacetime dimensions is equal to −2.
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5 Unitary representations of the anti-de Sitter algebra

In this section we discuss unitary representations of the anti-de Sitter algebra.
For definiteness we will mainly look at the case of four spacetime dimensions. We
refer to [4] for some of the original work, and to [19,20] where some of this work
was reviewed. In order to underline the general features we start in d spacetime
dimensions. Obviously, the group SO(d− 2, 2) is noncompact. This implies that
unitary representations will be infinitely dimensional. The generators are then
all anti-hermitean,

M†
AB = −MAB . (36)

Note that the covering group of SO(d− 1, 2) has the generators 1
2Γµν and 1

2Γµ.
They act on spinors, which are finite-dimensional objects. These generators,
however, have different hermiticity properties from the ones above.

The compact subgroup of the anti-de Sitter group is SO(2)× SO(d− 1) cor-
responding to rotations of the compact anti-de Sitter time and spatial rotations.
It is convenient to decompose the 1

2d(d + 1) generators as follows. First, the
generator M−0 is related to the energy operator when the radius of the anti-de
Sitter space is taken to infinity. The eigenvalues of this generator, which is as-
sociated with motions along the circle, are quantized in integer units in order to
have single-valued functions, unless one goes to the covering space CadS. So we
define the energy operator H by

H = −iM−0 . (37)

Obviously the generators of the spatial rotations are the operators Mab with
a, b = 1, . . . , d−1. Note that we have changed notation: here and henceforth the
indices a, b, . . . refer only to spacelike indices. The remaining 2(d−1) generators
M−a and M0a are combined into pairs of mutually conjugate operators,

M±
a = −iM0a ±M−a , (38)

and we have (M+
a )† = M−

a . The anti-de Sitter commutation relations now read

[H,M±
a ] = ±M±

a ,

[M±
a ,M±

b ] = 0 ,

[M+
a ,M−

b ] = −2(H δab + Mab) . (39)

Obviously, the M±
a play the role of raising and lowering operators: when applied

to an eigenstate of H with eigenvalue E, application of M±
a yields a state with

eigenvalue E ± 1.

In this section we restrict ourselves to the bosonic case. Nevertheless, let us
already briefly indicate how some of the other (anti-)commutators of the anti-de
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- j

6

E

0 1 2 3 4 5 6

E0 s

E0 + 1 s

E0 + 2 s s

E0 + 3 s s

E0 + 4 s s s

E0 + 5 s s s

Fig. 1. States of the s = 0 representation in terms of the energy eigenvalues E and the
angular momentum j. Each point has a (2j + 1)-fold degeneracy.

Sitter superalgebra decompose c.f. (17),

{Qα , Q
†
β} = H δαβ − 1

2 iMab (Γ aΓ bΓ 0)αβ

+ 1
2 (M+

a Γ a (1 + iΓ 0) + M−
a Γ a (1 − iΓ 0))αβ ,

[H ,Qα] = − 1
2 i(Γ

0 Q)α ,

[M±
a , Qα] = ∓ 1

2 (Γa(1 ∓ iΓ 0)Q)α . (40)

For the anti-de Sitter superalgebra, all the bosonic operators can be expressed
as bilinears of the supercharges, so that in principle one could restrict oneself
to fermionic operators only and employ the projections (1 ± iΓ 0)Q as the basic
lowering and raising operators. However, this is not quite what we will be doing
later in section 7.

Let us now assume that the spectrum of H is bounded from below,

H ≥ E0 , (41)

so that in mathematical terms we are considering lowest-weight irreducible uni-
tary representations. The lowest eigenvalue E0 is realized on states that we de-
note by |E0, s〉, where E0 is the eigenvalue of H and s indicates the value of the
total angular momentum operator. Of course there are more quantum numbers,
e.g. associated with the angular momentum operator directed along some axis
(in d = 4 there are thus 2s + 1 degenerate states), but this is not important for
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- j

6

E

0 1 2 3 4 5 6

E0 b s

E0 + 1 bs s

E0 + 2 b s bs s

E0 + 3 bs s bs s

E0 + 4 b s bs s bs s

E0 + 5 bs s bs s bs s

Fig. 2. States of the s = 1
2 representation in terms of the energy eigenvalues E and the

angular momentum j. Each point has a (2j +1)-fold degeneracy. The small circles de-
note the original s = 0 multiplet from which the spin-12 multiplet has been constructed
by taking a direct product.

the construction and these quantum numbers are suppressed. Since states with
E < E0 should not appear, ground states are characterized by the condition,

M−
a |E0, s〉 = 0 . (42)

The representation can now be constructed by acting with the raising operators
on the vacuum state |E0, s〉. To be precise, all states of energy E = E0 + n
are constructed by an n-fold product of creation operators M+

a In this way one
obtains states of higher eigenvalues E with higher spin. The simplest case is the
one where the vacuum has no spin (s = 0). For given eigenvalue E, the highest
spin state is given by the traceless symmetric product of E −E0 operators M+

a

on the ground state. These states are shown in Fig. 1.
Henceforth we specialize to the case d = 4 in order to keep the aspects related

to spin simple. To obtain spin-1
2 is trivial; one simply takes the direct product

with a spin-1
2 state. That implies that every point with spin j in Fig. 1 generates

two points with spin j ± 1
2 , with the exception of points associated with j = 0,

which will simply move to j = 1
2 . The result of this is shown in Fig. 2.

Likewise one can take the direct product with a spin-1 state, but now the
situation is more complicated as the resulting multiplet is not always irreducible.
In principle, each point with spin j now generates three points, associated with
j and j ± 1, again with the exception of the j = 0 points, which simply move to
j = 1. The result of this procedure is shown in Fig. 3.
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- j

6

E

0 1 2 3 4 5 6

E0 s

E0 + 1 ss s

E0 + 2 sf s s

E0 + 3 s s sf s s

E0 + 4 sf s sf s s

E0 + 5 s s sf s sf s s

Fig. 3. States of the s = 1 representation in terms of the energy eigenvalues E and
the angular momentum j. Observe that there are now points with double occupancy,
indicated by the circle superimposed on the dots. These points could combine into
an s = 0 multiplet with ground state |E0 + 1, s = 0〉. This s = 0 multiplet becomes
reducible and can be dropped when E0 = 2, as is explained in the text. The remaining
points then constitute a massless s = 1 multiplet, shown in Fig. 4.

Let us now turn to the quadratic Casimir operator, which for d spacetime
dimensions can be written as

C2 = − 1
2M

ABMAB

= H2 − 1
2{M

+
a ,M−

a } − 1
2 (Mab)

2

= H(H − d + 1) − 1
2 (Mab)

2 −M+
a M−

a . (43)

Applying the last expression on the ground state |E0, s〉 and assuming d = 4 we
derive

C2 = E0(E0 − 3) + s(s + 1) , (44)

and, since C2 is a Casimir operator, this result holds for any state belonging to
the corresponding irreducible representation. Note, that the angular momentum
operator is given by J2 = − 1

2 (Mab)
2.

We can apply this result to an excited state (which is generically present in
the spectrum) with E = E0 + 1 and j = s− 1. Here, we assume that the ground
state has s ≥ 1. In that case we find

C2 = (E0 + 1)(E0 − 2) + s(s− 1) −
∣∣∣M−

a |E0 + 1, s− 1〉
∣∣∣2

= E0(E0 − 3) + s(s + 1) , (45)
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Fig. 4. States of the massless s = 1 representation in terms of the energy eigenvalues E
and the angular momentum j. Now E0 is no longer arbitrary but it is fixed to E0 = 2.

so that

E0 − s− 1 = 1
2

∣∣∣M−
a |E0 + 1, s− 1〉

∣∣∣2 . (46)

This shows that E0 ≥ s+1 in order to have a unitary multiplet. When E0 = s+1,
however, the state |E0 + 1, s− 1〉 is itself a ground state, which decouples from
the original multiplet, together with its corresponding excited states. This can
be interpreted as the result of a gauge symmetry and therefore we call these
multiplets massless. Hence massless multiplets with s ≥ 1 are characterized by

E0 = s + 1 , for s ≥ 1 . (47)

For these particular values the quadratic Casimir operator is

C2 = 2(s2 − 1) . (48)

Although this result is only derived for s ≥ 1, it also applies to massless s = 0
and s = 1

2 representations, as we shall see later. Massless s = 0 multiplets have
either E0 = 1 or E0 = 2, while massless s = 1

2 multiplets have E0 = 3
2 .

One can try and use the same argument again to see if there is a possibility
that even more states decouple. Consider for instance a state with the same spin
as the ground state, with energy E. In that case

E(E − 3) = E0(E0 − 3) +
∣∣∣M−

a |E, s〉
∣∣∣2 . (49)
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For spin s ≥ 1, this condition is always satisfied in view of the bound E0 ≥ s+1.
But for s = 0, one can apply (49) for the first excited s = 0 state which has
E = E0 + 2. In that case one derives

2(2E0 − 1) =
∣∣∣M−

a |E0 + 2, s = 0〉
∣∣∣2 , (50)

so that

E0 ≥ 1
2 . (51)

For E0 = 1
2 we have the so-called singleton representation, where we have only

one state for a given value of the spin. A similar result can be derived for s = 1
2 ,

where one can consider the first excited state with s = 1
2 , which has E = E0 +1.

One then derives

2(E0 − 1) =
∣∣∣M−

a |E0 + 1, s = 1
2 〉
∣∣∣2 , (52)

so that

E0 ≥ 1 . (53)

For E0 = 1 we have the spin-1
2 singleton representation, where again we are

left with just one state for every spin value. The existence of these singleton
representations was first noted by Dirac [3]. They are shown in Fig. 5. Both
singletons have the same value of the Casimir operator,

C2 = − 5
4 . (54)

From the above it is clear that we are dealing with the phenomenon of mul-
tiplet shortening for specific values of the energy and spin of the ground state.
This can be understood more generally from the fact that the [M+

a ,M−
b ] com-

mutator acquires zero or negative eigenvalues for certain values of E0 and s. We
will return to this phenomenon in section 7 in the context of the anti-de Sitter
superalgebra.

6 The oscillator construction

There exists a constructive procedure for determining the unitary irreducible
representations of the anti-de Sitter algebra, which is known as the oscillator
method. This method can be used for any number of dimensions and also for
the supersymmetric extension of the anti-de Sitter algebra [29,30]. Here we will
demonstrate it for the case of four spacetime dimensions.

Consider an even n = 2p or an odd n = 2p + 1 number of bosonic harmonic
oscillators, whose creation and annihilation operators transform as doublets un-
der the compact subgroup U(1)×SU(2) of the covering group Sp(4) ∼= SO(3, 2).
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E0 + 4 s

c

E0 + 5 s
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Fig. 5. The spin-0 and spin-12 singleton representations. The solid dots indicate the
states of the s = 0 singleton, the circles the states of the s = 1

2
singleton. It is obvious

that singletons contain much less degrees of freedom than a generic local field. The
value of E0, which denotes the spin-0 ground state energy, is equal to E0 = 1

2 . The
s = 1

2
singleton ground state has an energy equal to unity, as is explained in the text.

We introduce pairs of mutually commuting annihilation operators ai(r) and bi(r)
labeled by r = 1, . . . , p and an optional annihilation operator ci when we wish
to consider an odd number of oscillators. The indices i are the doublet indices
associated with SU(2). The nonvanishing commutation relations are

[ai(r), a
j(s)] = δi

j δrs ,

[bi(r), b
j(s)] = δi

j δrs ,

[ci, c
j ] = δi

j , (55)

where the creation operators carry upper SU(2) indices and are defined by ai =
(ai)

†, bi = (bi)
† and ci = (ci)

†. The generators of U(1) × SU(2) are then given
by

U i
j = ai · aj + bj · bi + 1

2 (ci cj + cj c
i) , (56)

where ai · aj stands for
∑

r ai(r) a
j(r). The U(1) generator will be denoted by

Q = 1
2U

i
i and can be expressed as

Q = 1
2 (ai · ai + bi · bi + 1

2c
ici + 1

2cic
i)

= 1
2 (ai · ai + bi · bi + cici + 2p + 1)

= 1
2 (N + n) , (57)
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where N is the number operator for the oscillator states. Observe that Q is
associated with the generator that we previously identified with the energy op-
erator. The other generators, transforming according to the 3+ 3̄ representation
of SU(2), are defined by

Sij = (Sij)
† = ai · bj + aj · bi + ci cj . (58)

It is now easy to identify the raising and lowering operators by considering the
commutation relations of Q with all the other operators,

[Q ,U i
j ] = 0 , [Q ,Sij] = Sij, [Q ,Sij] = −Sij . (59)

Together with

[Sij, Skl] = [Sij, Skl] = 0 ,

[Sij, Skl] = δik U
j
l + δil U

j
k + δjk U

i
l + δj l U

i
k , (60)

we recover all commutation relations of SO(3, 2). Obviously, the operators Sij

raise the eigenvalue of Q, when acting on its eigenstates, while their hermitian
conjugates Sij lower the eigenvalue. Let us, for the sake of completeness, write
down the commutation relations of Q with the oscillators,

[Q , ai] = 1
2a

i , [Q , ai] = − 1
2ai . (61)

We see that ai raises the energy by half a unit whereas ai lowers it by the same
amount. The same relations hold of course true for the oscillators bi and ci. The
ground state |Ω〉 is then defined by

Sij|Ω〉 = 0 . (62)

The representation is built by acting with an arbitrary product of raising op-
erators Sij on the ground state. Depending on the number of oscillators we
have chosen certain states will be present whereas others will not. In this way
the shortening of the multiplets will be achieved automatically. Experience has
taught us that the oscillator construction is complete in the sense that it yields
all unitary irreducible representations. However, it is not possible to describe
the construction for arbitrary dimension, as every case has its own characteristic
properties.

The obvious choice for |Ω〉 is the vacuum state |0〉 of the oscillator algebra.
However, there are other possibilities. For example, we can act on |0〉 by any
number of different creation operators, i.e. ai(r1) aj(r2) bk(r3) · · · |0〉, as long as
we do not include a pair ai(r1) bj(r2) with r1 = r2, unless it is anti-ssymmetrized
in indices i and j. The reason is that Sij consists of terms that are linear in both
ai(r1) and bj(r2) annihilation operators with r1 = r2 and with symmetrized
SU(2) indices. Let us now turn to a number of relevant examples in order to
clarify the procedure.

Assume that we have a single harmonic oscillator (i.e. n = 1). Then there
are two possible ground states. One is |Ω〉 = |0〉. In that case we have E0 =
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Q = 1
2 and s = 0. The states take the form of products of even numbers of

creation operators, i.e. ci cj ck · · · |0〉, which are symmetric in the SU(2) indices
because the creation operators are mutually commuting. Obviously these states
comprise states of spin 1, 2, 3, . . . with multiplicity one. This is the s = 0
singleton representation. The spin-1

2 singleton follows from choosing the ground
state |Ω〉 = ci|0〉, which has E0 = Q = 1 and s = 1

2 . The states are again
generated by even product of creation operators which lead to states of spin 3

2 ,
5
2 , . . . with multiplicity one.

Let us now consider the case of two oscillators (n = 2). Here we distinguish
the following ground states and corresponding irreducible representations:

• One obvious ground state is the oscillator ground state, |Ω〉 = |0〉. In that
case we have E0 = Q = 1 and s = 0. This is the massless s = 0 representa-
tion.

• Alternative ground states are |Ω〉 = ai|0〉 or |Ω〉 = bi|0〉. In that case the
ground state has E0 = Q = 3

2 and s = 1
2 . This is the massless s = 1

2
representation.

• Yet another option is to choose |Ω〉 equal to m annihilation operators exclu-
sively of the a-type or of the b-type, applied to |0〉. This ground state has
E0 = Q = 1 + 1

2m and s = 1
2m. From the values of E0 and s one deduces

that these are precisely the massless spin-s representations.
• Finally one may choose |Ω〉 = (ai bj − aj bi)|0〉, which has E0 = Q = 2 and
s = 0. This is the second massless s = 0 representation.

To sum up, for a single oscillator one recovers the singleton representations
and for two oscillators one obtains all massless representations. The excited
states in a given representation are constructed by applying arbitrary products
of an even number of creation operators on the ground state. For more than two
oscillators, one obtains the massive representations. This pattern, sometimes
with small variations, repeats itself for other than four spacetime dimensions.

7 The superalgebra OSp(1|4)
In this section we return to the anti-de Sitter superalgebra. We start from the
(anti-)commutation relations already established in (39) and (40). For definite-
ness we discuss the case of four spacetime dimensions with a Majorana super-
charge Q. This allows us to make contact with the material discussed in section 3.
These anti-de Sitter multiplets were discussed in [17–20].

We choose conventions where the gamma matrices are given by

Γ 0 =

(
−i1 0

0 i1

)
, Γ a =

(
−iσa 0

0 iσa

)
, a = 1, 2, 3 , (63)

and write the Majorana spinor Q in the form

Q =

(
qα

εαβ q
β

)
, (64)
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where qα ≡ q†α and the indices α, β, . . . are two-component spinor indices. We
substitute these definitions into (40) and obtain

[H , qα] = − 1
2qα ,

[H , qα] = 1
2q

α ,

{qα , qβ} = (H 1 + J · σ)α
β ,

{qα , qβ} = M−
a (σaσ2)αβ ,

{qα , qβ} = M+
a (σ2σa)αβ , (65)

where we have defined the angular momentum operator Ja = − 1
2 i εabcM

bc. We
see that the operators qα and qα are lowering and raising operators, respectively.
They change the energy of a state by half a unit.

In analogy to the bosonic case, we study unitary irreducible representations
of the OSp(1|4) superalgebra. We assume that there exists a lowest-weight state
|E0, s〉, characterized by the fact that it is annihilated by the lowering operators
qα,

qα|E0, s〉 = 0 . (66)

In principle we can now choose a ground state and build the whole representation
upon it by applying products of raising operators qα. However, we only have to
study the antisymmetrized products of the qα, because the symmetric ones just
yield products of the operators M+

a by virtue of (65). Products of the M+
a sim-

ply lead to the higher-energy states in the anti-de Sitter representations of given
spin that we considered in section 5. By restricting ourselves to the antisym-
metrized products of the qα we thus restrict ourselves to the ground states upon
which the full anti-de Sitter representations are build. These ground states are
|E0, s〉, qα|E0, s〉 and q[αqβ]|E0, s〉. Let us briefly discuss these representations
for different s.

The s = 0 case is special since it contains less anti-de Sitter representations
than the generic case. It includes the spinless states |E0, 0〉 and q[αqβ]|E0, 0〉 with
ground-state energies E0 and E0 + 1, respectively. There is one spin-1

2 pair of
ground states qα|E0, 0〉, with energy E0 + 1

2 . As we will see below, these states
correspond exactly to the scalar field A, the pseudo-scalar field B and the spinor
field ψ of the chiral supermultiplet, that we studied in section 3.

For s ≥ 1
2 we are in the generic situation. We obtain the ground states |E0, s〉

and q[αqβ]|E0, s〉 which have both spin s and which have energies E0 and E0 +1,
respectively. There are two more (degenerate) ground states, qα|E0, s〉, both with
energy E0 + 1

2 , which decompose into the ground states with spin j = s− 1
2 and

j = s + 1
2 .

As in the purely bosonic case of section 5, there can be situations in which
states decouple so that we are dealing with multiplet shortening associated with
gauge invariance in the corresponding field theory. The corresponding multiplets
are then again called massless. We now discuss this in a general way analogous to
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the way in which one discusses BPS multiplets in flat space. Namely, we consider
the matrix elements of the operator qα q

β between the (2s+1)-degenerate ground
states |E0, s〉,

〈E0, s| qαqβ |E0, s〉 = 〈E0, s|{qα , qβ}|E0, s〉
= 〈E0, s|(E0 1 + J · σ)α

β|E0, s〉 . (67)

This expression constitutes an hermitean matrix in both the quantum numbers
of the degenerate groundstate and in the indices α and β, so that it is (4s+2)-by-
(4s+ 2). Because we assume that the representation is unitary, this matrix must
be positive definite, as one can verify by inserting a complete set of intermediate
states between the operators qα and qβ in the matrix element on the left-hand
side. Obviously, the right-hand side is manifestly hermitean as well, but in order
to be positive definite the eigenvalue E0 of H must be big enough to compensate
for possible negative eigenvalues of J · σ, where the latter is again regarded as
a (4s + 2)-by-(4s + 2) matrix. To determine its eigenvalues, we note that J · σ
satisfies the following identity,

(J · σ)2 + (J · σ) = s(s + 1)1 , (68)

as follows by straightforward calculation. This shows that J · σ has only two
(degenerate) eigenvalues (assuming s �= 0, so that the above equation is not
trivially satisfied), namely s and −(s+ 1). Hence in order for (67) to be positive
definite, E0 must satisfy the inequality

E0 ≥ s + 1 , for s ≥ 1
2 , (69)

If the bound is saturated, i.e. if E0 = s+1, the expression on the right-hand side
of (67) has zero eigenvalues so that there are zero-norm states in the multiplet
which decouple. In that case we must be dealing with a massless multiplet.
As an example we mention the case s = 1

2 , E0 = 3
2 , which corresponds to the

massless vector supermultiplet in four spacetime dimensions. Observe that we
have multiplet shortening here without the presence of central charges.

One can also use the oscillator method discussed in the previous section to
construct the irreducible representations. This is, for instance, done in [21,22].

Armed with these results we return to the masslike terms of section 3 for
the chiral supermultiplet. The ground-state energy for anti-de Sitter multiplets
corresponding to the scalar field A, the pseudo-scalar field B and the Majorana
spinor field ψ, are equal to E0, E0 + 1 and E0 + 1

2 , respectively. The Casimir
operator therefore takes the values

C2(A) = E0(E0 − 3) ,

C2(B) = (E0 + 1)(E0 − 2) ,

C2(ψ) = (E0 + 1
2 )(E0 − 5

2 ) + 3
4 . (70)

For massless anti-de Sitter multiplets, we know that the quadratic Casimir op-
erator is given by (48), so we present the value for C2 − 2(s2 − 1) for the three
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multiplets, i.e

C2(A) + 2 = (E0 − 1)(E0 − 2) ,

C2(B) + 2 = E0(E0 − 1) ,

C2(ψ) + 3
2 = (E0 − 1)2 . (71)

The terms on the right-hand side are not present for massless fields and we should
therefore identify them somehow with the common mass parameter. Compar-
ison with the field equations (22) shows for g = 1 that we obtain the correct
contributions provided we make the identification E0 = m+ 1. Observe that we
could have made a slightly different identification here; the above result remains
the same under the interchange of A and B combined with a change of sign in
m (the latter is accompanied by a chiral redefinition of ψ).

Outside the context of supersymmetry, we could simply assign independent
mass terms with a mass parameter µ for each of the fields, by equating C2 −
2(s2 − 1) to µ2. In this way we obtain

E0(E0 − 3) − (s + 1)(s− 2) = µ2 , (72)

which leads to

E0 = 3
2 ±

√
(s− 1

2 )2 + µ2 . (73)

For s ≥ 1
2 we must choose the plus sign in (73) in order to satisfy the unitarity

bound E0 ≥ s + 1. For s = 0 both signs are acceptable as long as µ2 ≤ 3
4 .

Observe, however, that µ2 can be negative but remains subject to the condition
µ2 ≥ −(s − 1

2 )2 in order that E0 remains real. For s = 0, this is precisely
the bound of Breitenlohner and Freedman for the stability of the anti-de Sitter
background against small fluctuations of the scalar fields [17].

We can also compare C2 − 2(s2 − 1) to the conformal wave operator for
the corresponding spin. This shows that (again with unit anti-de Sitter radius),
C2 = ✷adS + δs, where δs is a real number depending on the spin of the field.
Comparison with the field equations of section 3 shows that δs equals 0, 3

2 and
3, for s = 0, 1

2 and 1, respectively.
In the case of N -extended supersymmetry the supercharges transform under

an SO(N) group and we are dealing with the so-called OSp(N |4) algebras. Their
representations can be constructed by the methods discussed in these lectures.
However, the generators of SO(N) will now also appear on the right-hand side
of the anticommutator of the two supercharges, thus leading to new possibilities
for multiplet shortening. For an explicit discussion of this we refer the reader to
[19].

8 Conclusions

In these lectures we discussed the irreducible representations of the anti-de Sitter
algebra and its superextension. Most of our discussion was restricted to four
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spacetime dimensions, but in principle the same methods can be used for anti-
de Sitter spacetimes of arbitrary dimension.

For higher-extended supergravity, the only way to generate a cosmological
constant is by elevating a subgroup of the rigid invariances that act on the
gravitini to a local group. This then leads to a cosmological constant, or to a
potential with possibly a variety of extrema, and corresponding masslike terms
which are quadratic and linear in the gauge coupling constant, respectively. So
the relative strength of the anti-de Sitter and the gauge group generators on
the right-hand side of the {Q, Q̄} anticommutator is not arbitrary and because
of that maximal multiplet shortening can take place so that the theory can
realize a supermultiplet of massless states that contains the graviton and the
gravitini. Of course, this is all under the assumption that the ground state is
supersymmetric. But these topics are outside the scope of these lectures and will
be reviewed elsewhere [31].

We thank M. Günaydin for valuable comments. IH is supported by the Swiss
National Science Foundation through the graduate fellowship 83EU-053229. This
work is also supported by the European Commission TMR programme ERBFMRX-
CT96-0045.
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Abstract. We describe the application of methods from the study of discrete dynam-
ical systems to the study of histories of evolving spin networks. These have been found
to describe the small scale structure of quantum general relativity and extensions of
them have been conjectured to give background independent formulations of string
theory. We explain why the the usual equilibrium second order critical phenomena
may not be relevant for the problem of the continuum limit of such theories, and why
the relevant critical phenomena analogue to the problem of the continuum limit is in-
stead non-equilibrium critical phenomena such as directed percolation. The fact that
such non-equilibrium critical phenomena may be self-organized implies the possibility
that the classical limit of quantum theories of gravity may exist without fine tuning
of parameters. We note that dynamical theories of the kind described here may be
formulated so as not to employ the notion of a fixed configuration space, and so avoid
problems of constructibility of configuration spaces based on taking the quotient by
the diffeomorphism group. In such a theory time plays a necessarily fundamental role.

1 Introduction

The idea that space and time are fundamentally discrete is very old and has
often reappeared in the history of the search for a quantum theory of gravity1

However, it is only recently that concrete results from attempts to construct a
quantum theory have gravity have been found which suggest very strongly that
such a theory must be based on a discrete structure. These results come from the
quantization of general relativity[3,4], string theory[5] and the thermodynamics
of black holes[6–8]. (For reviews see[9–12].)

If space and time are discrete, then the study of the dynamics of the spacetime
may benefit from our understanding of other discrete dynamical systems such
as cellular automata[14], froths[15] and binary networks[16]. The importance
of this may be seen once it is appreciated that a key problem in any discrete
theory of quantum gravity must be the recovery of continuous space time and
the fields that live on it as an approximation in an appropriate continuum limit.

1 see, for example [1,2].

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 101−129, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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This continuum limit, which will be also related to the classical limit of the
theory, (because the physical cutoff lPlanck which marks the transition between
the discrete and continuous picture is proportional to ~) is then a problem in
critical phenomena[13]. As one doesn’t want the existence of classical spacetime
to rest on some fine tunings of parameters, this must presumably be some kind
of spontaneous, or self-organized critical phenomena[17]2.

However, there is a key element which distinguishes quantum gravity from
other kinds of quantum and statistical systems This is that the causal structure
is dynamical. As a result, the usual second order equilibrium critical phenom-
ena may not be relevant for the continuum limit of quantum theories of gravity,
as its connection to quantum field theory relies on rotation from a Euclidean
to Lorentzian metric and this is not well defined when the fluctuating degrees
of freedom are the metric (or causal structure.) Instead, the relevant statistical
physics analogue to the problem of the classical limit will be non-equilibrium
critical phenomena[18]. To see why, let us consider the issue of critical behav-
ior for a discrete dynamical systems whose only attribute is causal structure.
Consider a set P of N events, such that for any two of them p and q one may
have either p > q, (meaning p is to the causal future of q), or q > p, or neither,
but never both. This gives the set P the structure of a partially ordered set, or
poset. In addition, if one assumes that there are no time like loops and that the
poset is locally finite (which means that there are only a finite number of events
in the intersection of the future of any event and the past of any other) one has
what is called a causal set. One may then invent an action which depend on the
causal relations and then study the quantum statistical physics of such a set, in
the limit of large N .

This program has been pursued by physicists interested in using it as a
model of quantum gravity, particularly by Myers, Sorkin[19], ‘tHooft[20] and
collaborators. This is motivated by the fact that the events of any Lorentzian
spacetime form a poset, where p < q is the causal relation arising from the
lightcone structure of the metric. In fact, if the causal structure is given, the
spactime metric is determined up to an overall function.

Sorkin and collaborators have conjectured that the causal structure is suffi-
cient to define a satisfactory quantum theory of spacetime[19]. However, there
is reason to believe that this may not be the case, and that additional struc-
ture associated with what may loosely be called the properties of space, must
be introduced. One reason for this is that the models where the degrees of free-
dom are only causal structure do not seem, at least so far, to have yielded the
kinds of results necessary to answer the key questions about the emergence of
the classical limit.

As a result, recently, Markopoulou proposed adding structure to poset models
of spacetime taken from results in other approaches to quantum gravity [21].
Her idea has been to combine the discrete causal structure of poset construction
with descriptions of a discrete quantum spatial geometry which has emerged

2 Indeed this is a general problem for particle physics, brought on by the hierarchy
problem, which is the existence of several widely separated scales.
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from the study of non-perturbative quantum gravity. These descriptions are
usually expressed in terms of spin networks, which are graphs whose edges are
labeled with half-integers, 1/2, 1, 3/2, ... which represent quantum mechanical
spins. Originally invented by Penrose[1], more recently they have been shown
to represent faithfully a basis of exact non-perturbative states of the quantum
gravitational field[3,4]. Extensions of the spin network states have also been
constructed that are relevant for supergravity[29] and other extensions have been
proposed in the context of a conjectured background independent formulation
of string theory[25–27]

To show how the discrete causal structure of posets may be fitted to a discrete
description of both spacetime and spatial geometry we may need to describe the
structure of a causal set P in more detail. The Alexandrov neighborhood of two
events p and q, A(p, q), consist of all x such that p < x < q. ’t Hooft has proposed
that the number of events in A(p, q) should be a measure of its volume, in Planck
units. If the poset is taken by events picked randomly from a Lorentzian manifold,
using the measure given by the volume element, there is then exactly enough
information in the poset to reconstruct the metric, in the limit of an infinite
number of events. Using the Alexandrov neighborhoods of a poset, we may then
construct a discrete model of a spacetime geometry. When the theory has a good
classical limit that should approximate a continuous spacetime geometry.

In classical general relativity it is possible to define an infinite number of spa-
tial slices, which have defined on them three dimensional Reimannian geometries.
There are an infinite number of ways to slice a spacetime into a sequence of spa-
tial slices, each of which may be associated with surfaces of simultaneity defined
by a family of observers and clocks moving in the spacetime. Because the choice
of how to slice spacetime into a series of spatial geometries is arbitrary time in
general relativity is referred to as being “many-fingered”.

A completely analogous notion of spatial geometry can be defined strictly in
terms of a poset. To do this we consider a set of events Σ ⊂ P which consists
of events yi such that no two of them are causally related (i.e. neither yi < yj
or yj < yi for all pairs in Σ.) These may be called “spacelike related”. If no
event of P may be added to Σ preserving the condition of no causal relations
it is a maximal set of spacelike related events. Such sets are called antichains
or discrete spacelike slices of P . The basic idea of [21] is then to endow the
antichains of causal sets with the properties of discrete quantum geometries
represented by spin networks. The result gives a notion of a quantum spacetime,
which is discrete but which has many of the attributes of continuous spacetime,
including causal structure, spacelike slices and many-fingered time. As described
in [21] discrete sets having these properties can be constructed by beginning with
a spin network and then altering it by a series of local moves.

The purpose of this paper is to raise several key issues involved in the study of
the continuum limits in this kind of formulation of quantum gravity. It is written
for statistical physicists, relativists and quantum field theorists. Our intention
in writing it is mainly to point the attention of people in these fields to the
existence of a class of problems in which methods used to study non-equilibrium
critical phenomena may play an important role in studies of quantum gravity.
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In the next section we describe the basic structure of a causally evolving
spin network, in language we hope is accessible to statistical physicists. We do
not give any details about how these structures are related to general relativity
or its quantization, these may be found elsewhere[3,4,22,23,10,9,11]. Section 3
and 4 then discuss the problem of the classical limit of this theory In section 5
some structures are defined on the set of quantum states of the theory, which are
then used in sections 6 and 7, in the context of a simplified model, to argue for
the existence of a classical limit that may reproduce general relativity. Section
8 then introduces a new question, which is how the dynamics of the theory is
to be chosen. We suggest that it may be reasonable for the dynamics to evolve
as the spacetime does, leading to the classical limit as a kind of self-organized
critical phenomena.

Finally, in section 9 we discuss a new issue concerning the problem of time
in quantum cosmology, which concerns the question of whether the physical
configuration space of the theory can be constructed by any finite procedure.

2 Combinatorial descriptions of quantum spacetime

There are actually several closely related versions of the spin network description
of quantum spatial geometry[24–26]. As our interest here is on the analysis of
their dynamics, we will consider only one kind of model, which is the easiest to
visualize. This is associated with combinatorial triangulations[21]3.

We describe first the quantum geometry of space, then how these evolve to
make combinatorial spacetimes.

2.1 Combinatorial description of spatial geometry

A combinatorial m-simplex is a set of m points, e1, ...em called the vertices,
together with all the subsets of those points. Those subsets with two elements,
e12 = {e1, e2}... are called edges, those with three e123 = {e1, e2, e3}... faces and
so on. A combinatorial tetrahedron is a combinatorial 4 simplex.

A three dimensional simplicial psuedomanifold, T , consists of a set of N
combinatorial tetrahedra joined such that each face is in exactly two tetrahedra.
Many such psuedomanifolds define manifolds, in which case the neighborhoods
of the edges and nodes are homeomorphic to the neighborhoods of edges and
nodes in triangulations of Euclidean three space. These are constraints on the
construction of the psuedomanifold, which are called the manifold conditions.
When they are not satisfied, we have a more general structure of a psuedoman-
ifold. Many psuedomanifolds can be constructed from manifolds by identifying
two or more edges or nodes.

The sets on which the manifold conditions fail to be satisfied constitute de-
fects in the topology defined by the combinatorial triangulation. Under suitable

3 Its exact relationship to the spin network states which arise in canonical quantum
gravity is complicated, due to some subtleties which need not concern us here. These
are discussed in [28].
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choices of the evolution rules these defects propagate in time, forming extended
objects, with dimension up to two less than the dimension of the spacetime.
When the discrete spacetime has a dynamics, as we will describe below, laws of
motion for the extended objects are induced. It is very interesting that string
theory in its present form has in it extended objects of various dimensions; the
relationship between those “branes” and the defects in psuedomanifolds is under
investigation[28].

A psuedomanifold may be labeled by attaching suitable labels to the faces
and tetrahedra. For quantum gravity it is useful to consider labels that come
from the representation theory of some algebra G, which may be a Lie algebra, a
quantum Lie algebra, a supersymmetry algebra, or something more general. Such
algebras are characterized by a set of representations, i, j, k... and by product
rules for decomposing products of representations, j ⊗ k =

∑
l f
l
jkl, where the

f ljk are integers. Each such algebra has associated to it linear vector spaces
Vijkl, which consists of the linear maps µ : i⊗ j ⊗ k ⊗ l → 1, where 1 is the one
dimensional identity representation. It is then usual to label a model of quantum
gravity with algebra G by associating a representation k with each face and an
intertwinor µ ∈ Vijkl to each tetrahedra, where i, j, k, l label its four faces. The
pseudomanifold T , together with a set of labels is denoted Γ and called a labeled
pseudomanifold.

It is particularly convenient to work with a quantum group at a root of
unity, as the label sets in these cases are finite. In canonical quantum gravity,
the quantum deformation is related to the cosmological constant[30,31].

To each labeled pseudomanifold Γ we associate a basis state |Γ > of a quan-
tum theory of gravity. The set of such states spans the state space of the theory,
H, whose inner product is chosen so that the topologically distinct |Γ >’s com-
prise an orthonormal basis.

Each labeled pseudomanifold is also dual to a spin network, which is a com-
binatorial graph constructed by drawing an edge going through each face and
joining the four edges that enter every tetrahedra at a vertex[1,4]. The edges are
then labeled by representations and the nodes by intertwinors4.

If one wants a simpler model one may simply declare all labels to be identical
and leave them out. These are called “frozen models[28]”. Frozen models are like
the dynamical triangulation models of Euclidean quantum gravity, except that
there are different kinds of simplices, corresponding to causal ordering. We may
also consider “partly frozen” models in which the spins on the faces are all equal,
but the intertwinors are allowed to vary over a set of allowed values.

One of the results of the canonical quantization of general relativity is a
geometrical interpretation for the spins and intertwinors of spin networks. Given

4 Note that the pseudomanifolds have more information than the spin networks, for
a given spin network may come from several combinatorial triangulations. The spin
network structure may be extended so as to code this additional information, for
example by extending the edges into tubes as in [25,26]. For simplicity in this pa-
per we stick to psuedomanifolds. In some papers these are also called “dual spin
networks”[21].
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the correspondence of labeled triangulations to spin networks, this interpretation
may be applied directly to the simplices of the labeled spin networks. Doing this,
we find that each face fabc of the combinatorial triangulation has an area, which
is related to the spin jabc on the face by the formula[3],

Aabc = l2Planck
√
jabc(jabc + 1) (1)

There are also quanta of volume associated with the combinatorial tetra-
hedras of the combinatorial triangulations. This correspondence is more com-
plicated, and is motivated as well from canonical quantum gravity. Associated
with the finite dimensional space of intertwinors Hjα at each node, where the
spins of the 4 incident edges are fixed to be jα, is a volume operator Vjα [10,3].
These operators are constructed in canonical quantum gravity[10,3] and shown
to be hermitian[32]. They are also finite and diffeomorphism invariant, when
constructed through an appropriate regularization procedure[10,3]. Their spec-
tra have been computed[32], yielding a set of eigenvalues {vIjα} and eigenstates

|vIjα >∈ Hjα . These eigenvalues are given, in units of l3Planck by certain combina-
torial expressions found in [32]. Thus, a combinatorial triangulation represents
a quantum geometry where the faces have areas and the tetrahedra volumes,
which depend on the labelings in the way we have described.

2.2 Causal evolution of quantum geometries

We now follow the proposal of [21] and construct combinatorial quantum space-
times by applying a set of evolution rules to the states we have just described. A
basis state |Γ0 >∈ H may evolve to one of a finite number of possible successor
states |Γ I0 >. Each |Γ I0 > is derived from |Γ0 > by application of one of four
possible moves, called Pachner moves[]. These moves modify the state |Γ0 > in
a local region involving one to four adjacent tetrahedra.

Consider any subset of Γ consisting of n adjacent tetrahedra, where n is
between 1 and 4, which make up n out of the 5 tetrahedra of a four-simplex
S4. Then there is an evolution rule by which those n tetrahedra are removed,
and replaced by the other 5 − n tetrahedra in the S4. This is called a Pachner
move. The different possible moves are called n → (5 − n) moves (Thus, there
are 1 → 4, 2 → 3, etc. moves. The new tetrahedra must be labeled, by new
representations j and intertwiners k. For each move there are 15 labels involved,
10 representations on the faces and 5 intertwinors on the tetrahedra. This is
because the labels involved in the move are exactly those of the four simplex
S4. For each n there is then an amplitude An→5−n that is a function of the
15 labels. A choice of these amplitudes for all possible labels, for the four cases
1 → 4, ...., 4 → 1, then constitutes a choice of the dynamics of the theory.

The application of one of the possible Pachner moves to Γ0, together with
a choice of the possible labelings on the new faces and tetrahedra the move
creates, results in a new labeled pseudomanifold state Γ1. This differs from Γ0

just in a region which consisted of between 1 and 4 adjacent tetrahedra. The
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process may be continued a finite number of times N , to yield successor labeled
pseudomanifold states Γ2, ...ΓN .

Any particular set of N moves beginning with a state Γ0 and ending with
a state ΓN defines a four dimensional combinatorial structure, which we will
call a history, M from Γ0 to ΓN . Each history consists of N combinatorial
four simplices. The boundary of M, is a set of tetrahedra which fall into two
connected sets so that ∂M = Γ0 ∪Γ1. All tetrahedra not in the boundary of M
are contained in exactly two four simplices of M.

Each history M is a causal set, whose structure is determined as follows.
The tetrahedra of each four simplex, S4 of M are divided into two sets, which
are called the past and the future set. This is possible because each four simplex
contains tetrahedra in two states Γi and Γi+1 for some i between 0 and N . Those
in Γi were in the group that were wiped out by the Pachner move, which were
replaced by those in Γi+1. Those that were wiped out are called the past set of
that four simplex, the new ones, those in Γi+1 are called the future set. With
the exception of those in the boundary, every tetrahedron is in the future set of
one four simplex and the past set of another.

The causal structure of M is then defined as follows. The tetrahedra of M
make up a causal set defined as follows. Given two tetrahedra T1 and T2 in M,
we say T2 is to the future of T1 (written T2 > T1) iff there is a sequence of causal
steps that begin on T1 and end on T2. A causal step is a step from a tetrahedron
which is an element of the past set of some four simplex, S4 to any tetrahedron
which is an element of the future set of the same four simplex. By construction,
there are no closed causal loops, so the partial ordering gives a causal set.

Each history M may also be foliated by a number of spacelike slices Γ . These
are the anitchains that we defined in section 1

Each Γi in the original construction of M constitutes a spacelike slice of M.
But there are also many other spacelike slices in M that are not one of the Γi.
In fact, given any spacelike slice Γ in M there are a large, but finite, number of
slices which are differ from it by the application of one Pachner move. Because
of this, there is in this formulation a discrete analogue of the many fingered time
of the canonical picture of general relativity.

2.3 How the dynamics are specified

We have now defined quantum spatial geometry and quantum spacetime his-
tories, both completely combinatorially. To turn this structure into a physical
theory we must invent some dynamics. Although it is not the only possible start-
ing point (and we will discuss another in section 8) it is best to begin by being
conservative and using the standard notion of the path integral. We then assign
to each history M an amplitude A[M] given by

A[M] =
∏
i

A[i] (2)

where the product is over the moves, or equivalently the 4-simplices, labeled by i.
A[i] is the amplitude for that four simplex, which will be a function of its causal
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structure (1 → 4 or the others) and the labels on its faces and tetrahedra. The
dynamics is specified by giving the complex function A[i], which depends on the
possible causal structures and labels, a choice of such a function is equivalent to
a choice of an action.

The amplitude for the transition from an initial state |i > to a final state
|f >, both in H is then given by

T [i, f ] =
∑

M|∂M=|i>∪|f>
A[M] (3)

where the sum is over all histories from the given initial and final state.
The theory is then specified by giving the kinematics, which is the algebra

from which the label set is chosen and the dynamics, which is the choice of
functions A[i]. One important question, which we will now discuss, is whether
there are choices that lead to theories that have a good classical limit.

3 The problem of the classical limit and its relationship
to critical phenomena

Having defined the class of models we will study, we now turn to our main
subject, which is the problem of the classical limit and its relation to problems
in non-equilibrium critical phenomena. We begin by making the following ob-
servation: Suppose that the amplitudes of each move were real numbers of the
form,

A[i] = e−S(i) (4)

Then the sum over histories can be considered to define a statistical system,
whose partition function is of the form,

Z[i, f ] =
∑

M|∂M=|i>∪|f>
e−
P

i S(i) (5)

Thus we have a statistical average over histories, each weighed by a probability,
just as in non-equilibrium systems such as percolation problems. In fact, there
is an exact relationship with directed percolation problems, as the following
example shows.

In Figure (1) we show the setup of a 1 + 1 directed percolation problem. The
degrees of freedom are the arrows, each of which points to the future, which is
upwards in the picture. The value or state of an arrow is whether it is on or off.
A history, M of a directed percolation problem is a record of which arrows are
on. One such history is shown in Figure (2).

In the simplest version of directed percolation, each arrow is turned on with
a probability p. There is a critical probability p∗ at which the percolation phase
transition takes place. Below p∗ the on arrows make up disconnected clusters
of finite size, whereas for p > p∗ the on arrows almost always form a single
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Fig. 1. A 1 + 1 dimensional directed percolation problem.

Fig. 2. One history of a directed percolation system.
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connected cluster. At p∗ the system is just barely connected. At this point cor-
relation functions are scale invariant.

A more complicated version of directed percolation can be described as fol-
lows. Each diagonal link is turned on or off according to a rule which depends
on several parameters. To do this one introduces a time coordinate, which is
a label attached to the nodes which is increasing in the direction the arrows
point and so that all nodes that share a common time coordinate are causally
unrelated. We then apply the rule to each node at a given time, successively in
time, generating the evolution of the history from some initial state.

Each node has two arrows pointing towards it, which we will call the node’s
past arrows and two arrows leaving it, which we will call its future arrows. The
rule governs whether one or both of the future pointing arrows at the node are
on, as a function of the state of the past arrows. For our purposes the exact form
of the rules is not important, what matters is that there is a critical surface in the
space of parameters at which the behavior of the system is critical, corresponding
to the percolation phase transition. At the critical point the system is in the same
universality class as simple directed percolation depending on the one parameter
p. This second model will be called the dynamical model, as the histories evolve
in time, by applying the rule to the nodes at later and later times. A dynamical
model may be probabilistic or deterministic, depending on the nature of the rule
applied at each node.

Notice that a history M of a directed percolation problem is a causal set. We
will say that a node p is to the future of a node q (and write p > q) in a given
history M if there is a chain of on arrows beginning at q and ending at p. A
model of directed percolation in d+ 1 dimensions is then a model of dynamical
causal structure for a discrete d + 1 dimensional spacetime. A history M of a
directed percolation model then has a causal structure and all its acutraments,
including discrete spacelike surfaces, light cones, future causal domains, past
causal domains, etc. In a percolation problem based on a fixed spacetime lattice
as in Figure (1 we may define the background causal structure to be the one
defined by the history in which all the arrows are on.

In particular, the values of the arrows (on or off) at one time t make a state
|ψ >. If the model has n arrows in each constant time surface, the state space
is 4n dimensional. In the deterministic models an initial state |ψ0 > evolves to
a unique history M. Thus a deterministic model of directed percolation is a
cellular automata, called a Domany-Kunsel cellular automata model[33].

One way to understand what happens at the directed percolation critical
point is to use the concept of damage[16]. In a deterministic model of directed
percolation pick an initial state |ψ0 >. Evolve the system to a history M0. Then
change one arrow a0 in the initial state and evolve to the corresponding history
M1. Label any arrow whose value is different in the two histories as damaged.
The damaged arrows make a connected set D, called the damaged set, which lie
in the future causal domain of the arrow a0 according to the background causal
structure.

Hence, we see that damage corresponds to a perturbation of the discrete
causal structure. It is interesting to ask how the morphology of the damaged
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region depends on the phase of the percolation system. Below the percolation
phase transition the causal domains are finite and isolated, and the same is true
for the damaged sets. Just at the phase transition point, damage is able to prop-
agate arbitrarily far, for the first time. However, the damage is constrained to
follow the background causal structure, which is the causal structure of the un-
perturbed history. Thus, if the theory has a continuum limit, the spread of the
damage will correspond to the propagation of some causal effect. But if there
is a continuum limit associated with the phase transition, then the correlation
functions that measure the spread of damage will be power-law. In this case they
should correspond in the continuum limit to the propagation of massless parti-
cles. Thus, if we think of the damage as the propagation of a perturbation in the
causal structure, it must correspond in the continuum limit to the propagation
of a graviton, which is how the propagation of a change in the causal structure
is described in the perturbative theory. If the theory has a good continuum limit
then the gravitons must travel arbitrarily far up the lightcones of the background
causal structure. We see that this will only be possible at the critical point of
the directed percolation model.

Thus, by identifying a directed percolation model with a dynamical theory
of causal structure, we see that if that theory is to have a continuum limit
corresponding to general relativity in 4 or more spacetime dimensions, the only
possibility for the existence of such a limit is at the critical point of the directed
percolation model. Thus we see that directed percolation critical phenomena
must play the same role for discrete models of dynamical causal structure that
ordinary second order critical behavior plays in Euclidean quantum field theory.

4 Is there quantum directed percolation?

There is however an important difference between what is required for a theory of
quantum gravity and the directed percolation models so far studied by statistical
physicists. In a discrete model of quantum gravity each history M is assigned an
amplitude A[M], which is generally a complex number. All directed percolation
models so far studied (to the authors’ knowledge) are either deterministic or
probabilistic. In the latter case a probability p[M] is assigned to each history
M, which is of course a real number between 0 and 1. It is only in this case, in
which each history has a probability, that we know anything about the critical
phenomena associated to directed percolation. However, in quantum mechanics
paths are weighed by amplitudes,which are complex numbers. Thus, it would
thus be very interesting to know whether there are analogous critical phenomena
in models which are set up as directed percolation models, (for example as in
Figure (1), except that a complex amplitude A[e], rather than a probability, is
assigned to the state at each node. We may call such a model a quantum directed
percolation model. We believe that the study of such models could be very useful
for understanding the conditions required for discrete models of quantum gravity
to have good continuum limits.

One issue that must be stressed is that very little is actually known about the
continuum limit for Lorentzian path integrals where the histories are weighed
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by complex phases rather than probabilities. In quantum mechanics and conven-
tional quantum field theory the path integrals are normally defined by analytic
continuation from Euclidean field theory, where the weights can be considered
probabilities. In the absence of such a definition, one might try to define the
sum over histories directly. However, one faces a serious question of whether the
sums converge at all.

This problem cannot be avoided in a case such as the present, in which the
system is discrete. Of course, the usual wisdom is that the classical limit will exist
because the phases from histories which are far-from-classical paths interfere
destructively, leaving only the contributions near-classical histories, which add
constructively. The problem is that in a finite system, in which there are a finite
number of histories in the sum, the cancellation coming from the destructive
interference will not be complete. There will be a residue coming from the sum,
with a random phase and an absolute value of order

√
n, if there are n far-

from-classical histories5. This contribution must be much smaller than those
coming from close to classical paths, which will have an absolute value of order
m, where m is the number of close to classical paths. Thus, the existence of
the classical limit seems to require that m >>

√
n, which means that there are

many more near classical paths than far-from-classical paths. Of course, in any
standard quantum system the actual situation is the opposite, there are many
more far-from-classical than near-classical paths.

This argument suggests that the existence of the classical limit may require
that a continuum limit has been taken in which the number of histories diverges.
In this case it may be possible to tune parameters to define a limit in which the
non-classical contribution to the amplitude cancels completely. In essence, this
is what is forced by defining the theory in terms of an analytic continuation from
a Euclidean field theory.

In the absence of a definition by an analytic continuation, the sums over
causal histories may fail to have a good classical limit because they lack both an
infinite sum over histories and a suitable definition of a corresponding Euclidean
theory. This is perhaps the key question concerning the classical limit of such
theories.

5 Discrete superspace and its structure

Having raised several issues concerned with the evaluation of the path integrals
that arise in studies of evolving spin networks, we would now like to describe
here a formalism and a language which may be useful for addressing them. It
is convenient to consider a superspace Ω consisting of all 3 dimensional psue-
domanifolds constructed with a finite number of tetrahedra. Associated to this
is ΩG, which is the space of all labeled pseudomanifolds based on the algebra
G. These spaces have intrinsic structure generated by the evolution under the
Pachner moves.

5 This has been verified in a numerical computation by Sameer Gupta.
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Consider an initial pseudomanifold Γ0, with a finite number of tetrahedra.
We then consider all pseudomanifolds γ1

α that can be reached from Γ 0 by one
instance of any of the 4 allowed moves n → 5 − n. They are finite in number,
and labeled by an arbitrary integer α. We will call this set S1

γ0 . Generalizing

this, it is natural then to consider the set SNγ0 of all pseudomanifolds that can

be reached from Γ 0 in N or less moves. Clearly we have SN−1
γ0 ⊂ SNγ0 . We will

also want to speak about the “boundary” of SNγ0 , which is BNγ0, the set of all four

valent graphs that can be reached from γ0 in N moves, but cannot be reached
from γ0 by any path in fewer than N moves. A pseudomanifold in BNγ0 will be

labeled γNα1,...αN
where, for example, γ2

α1,α2
is the α2’th labeled pseudomanifold

that can be reached from γ1
α1

.
It is also convenient to use the following terminology, borrowed from con-

siderations of combinatorial chemistry[34]. We will call the set S1
γ0 the adjacent

possible set of γ0, as it consists of all the possible states that could directly fol-
low γ0. More generally, for any N , the set BNγ0 will be called the N ’th adjacent
possible, since it contains all the possible new states available to the universe
after N steps that were not available after N − 1 steps.

It is clear that the for states composed of a large number of labeled tetrahe-
dra, the N ’th adjacent possible sets grow quickly, as is typical for combinatorial
systems.

We may make some straightforward observations about the sets SNγ0 .

• Given two pseudomanifolds α and β in SNγ0 , we will say that α generates β if

there is a single move that takes α to β. (For example γ1
α1

generates γ2
α1,α2

.)

SNγ0 then has the structure of a supergraph GNγ0 , which is a directed graph

whose nodes consist of the elements of SNγ0 , connected by directed edges that
represent generation.

• A path p in SNγ0 is a list of pseudomanifoldsγ1, ...γm, each of whom generates

the next. If there exists a path p that runs from α to δ, both elements of SNγ0
then we may say that α ≤ δ, or “α precedes δ”. SNγ0 thus has the structure
of a partially ordered set.

There are corresponding statements for ΩG, the space of all finite labeled
pseudomanifolds. We may define the set MN

γ0 , an element of which is a la-
beled pseudomanifold Γ . This corresponds to all elements of ΩG which may be
reached in N steps from an initial labeled pseudomanifold γ0. We may extend
the relations just defined to the elements of MN

γ0 . Thus, given two labeled pseu-
domanifolds Γ and ∆, we may say Γ generates ∆ if the graph γ of Γ generates
the graph δ of ∆, with the obvious extensions to the notion of a path. Thus,
MN
γ0 has as well the structure of a partially ordered set. In addition, we have

the “boundary” of MN
γ0, consisting of all the labelings of the elements of BNγ0 ,

which we may call ANγ0 .

We may note that neither MN
γ0 nor SNγ0 are causal sets, as for N large enough

there will be closed paths that may begin and end on a graph γ ∈ SNγ0 .
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We may note that there is an obvious map r : ΩG → Ω in which labels are
erased.

We consider MN
γ0 to be then the discrete analogue of Wheelers superspace.

This is suggested by the fact that the labeled pseudomanifolds diagonalize ob-
servables that measure the three geometry. We may note that just as in the
continuum case we may put a metric on MN

γ0. If α > β or β > α then we may

say that α and β are causally related. In this case, the metric g(α, β) = n, the
length of the shortest path that connects them. Thus, as in the continuum case,
the metric gives the superspaces a poset structure.

6 Some simple models

We will now illustrate some of the issues involved in the continuum limit, using
the frozen model as an example. This model is similar to dynamical triangulation
models of Euclidean quantum gravity, but it differs from those because of the role
of the causal structure. To write it down more explicitly, we let the index c take
values over the four types of causal structure: c ∈ {1 → 4, 2 → 3, 3 → 2, 4] → 1}

There are then four amplitudes A[c] that must be specified. We may write
them in terms of amplitudes and phases as,

A[c] = ace
ıθc (6)

The amplitude for a history is then given by

A[M] =
∏
c

(A[c])Nc (7)

where Nc is the number of occurances of the c’th causal structure in the history.
These of course satisfy

N =
∑
c

Nc. (8)

The model has four parameters, which are the four complex numbers A[c]. It
can be further simplified so that it depends only on fewer parameters. One way
to do this is to insist that the amplitude are pure phases, so that all four moves
have equal probability, but with certain phases,

A[c] = eıθc (9)

We can further simplify by insisting that each of the pair of moves that are time
reversals of each other have the same phase, this means that6

A[1 → 4] = A[1 → 4] = eıα (10)

6 The reader may wonder why we assign the time reversed amplitude to be equal to
the original, rather than its complex conjugate. The answer is that we want a process
followed, by its time reversal, to be distinct from the process where nothing happens.
In general relativity a process and its time reversal are related by a diffeomorphism
and thus have equal actions, thus in the quantum theory they are given by equal
amplitudes.
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A[2 → 3] = A[3 → 2] = eıβ (11)

To write the amplitude let us then define λ = 1
2 (α + β) and µ = 1

2 (α − β).
The total amplitude of a history M is then,

A[M] = eı(λNtotal+µNdiff ) (12)

where

Ndiff = N [1 → 4] +N [4 → 1] −N [2 → 3] −N [3 → 2] (13)

We see that as Ntotal is proportional to the four volume, λ plays the role
of a cosmological constant. It is interesting to compare this to the action for
dynamical triangulations, which is of the form SDT = λNtotal + κN2 where
N2 is the number of two simplices which is a measure of the averaged spacetime
scalar curvature. This suggests that if there is a continuum limit Ndiff might also
be a measure of the averaged spacetime curvature scalar, suitable for spacetimes
of Minkowskian signature.

7 The classical limit of the frozen models

Of course, the actual behavior of the evolution described by the theory will
depend on the details of the amplitudes A[c]. However, it is useful to ask whether
any conclusions can be drawn about the evolution in the case that we have no
information about the actual forms of the amplitudes Let us make the simplest
possible assumption, which is that all the amplitudes are given by some random
real phase, so that A[c] = eiθ. Then the amplitude for any path p is exp[iθn(p)].

In this case we can draw some simple conclusions as follows. Consider the
amplitudes A[Γ0 → Γf ] for all labeled pseudomanifolds Γf ∈ MN

γ0 . It is clear

that for Γf ∈ ANγ0 the amplitudes A[Γ0 → Γf ] = WeıθN , where W is the number
of inequivalent ways to reach Γf in N steps. Thus, the amplitudes evolve in such
a way that the amplitudes for the states on the boundary is always a coherent
phase.

On the other hand, consider a Γt which is in the interior of MN
γ0 . Let this be

an element that is in AMγ0 for some M << N . There will typically be a number
of different paths that reach Γt, with a variety of different path lengths. The
number of such paths will grow rapidly with N , as long as M << N . The total
amplitudes for such labeled pseudomanifolds to be reached after N steps then
will by A[Γ0 → Γf ] =

∑
r e
ıθr with r a finite set of integers M ≥ r ≥ N . As

N grows large this set grows, and there are typically no interesting correlations
amongst them. In this case, as N grows large then A[Γ0 → Γf ] ≈ 0.

This means that for N large, most of the amplitude predicted by the path
integral (3) with these assumptions will be concentrated on AMγ0 and a narrow
shell trailing it.

This may be considered to be a form of the classical limit, because as N
grows, the amplitude to have evolved from Γ0 to a state Γf by an N step path
is concentrated on those states that can be reached in N steps, but no fewer.
This means that as N increases the amplitude is evolving along geodesics of the
metric G defined in the discrete superspace.
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8 Dynamics including the parameters

In the class of theories we have formulated here the dynamics of the theory is
given by four functions A[c] which give the amplitude for each four simplex which
is added to a history as the result of a Pachner move. These functions depend on
the causal structure c and labels on the 4-simplices. By using the requirement
that the functions are invariant under permutations of the elements of the four
simplex that do not change the causal structure, we can reduce the functions
A[c, p] to particular forms which depend on a set of parameters, p, which live in a
parameter space P . The main dynamical problem is to find the set P∗ ⊂ P such
that the amplitudes defined by the sum over histories (3) has a good classical
limit.

However there is clearly something unsatisfactory about this formulation.
No fundamental theory can be considered acceptable if it has a large number of
parameters which must be finely tuned to some special values in order that the
theory reproduces the gross features of our world. Instead, we would prefer a
theory in which the critical behavior necessary for the existence of the classical
limit was achieved automatically. Theories of this kind are called “self-organized
critical systems”.

One possibility is that the parameters p which determine the amplitudes for
the different evolution moves are themselves dynamical variables which evolve
during the course of the evolution of the system to values which define a critical
system with a good continuum limit.

Here is one form of such a theory. We associate to each tetrahedron in the
model, Ti a value of the parameters pi. When a move is made it involves n < 5
tetrahedra. We will assume that the amplitude of the move is given byA[c,< p >]
where < p > is the average of the pi among the n tetrahedra involved in the
move. The move creates 5−n new tetrahedra. We assign to each of them the new
parameters < p >. This rule guarantees that those choices of parameters that
spread the most widely through the population of tetrahedra govern the most
amplitudes. In this way, the system itself may discover and select the parameters
that lead to criticality, and hence a classical limit.

Other rules for the new parameters may be contemplated. Another choice is
the following. The set of parameters pα are divided randomly into n sets. The
new pα’s in each of these sets are taken from the corresponding values in one of
the n “parent” tetrahedra that were input into the move. This distribution of
the parameters is made separately for each of the 5 − n new tetrahedra.

The reader may object that the possibility for giving different rules for the
choices of parameters violates our intention that the system choose its own laws.
However, this is not the point. There is no way to avoid making a choice in
giving rules to the system. What we want to avoid is the circumstance that the
rules which result in a classical limit are so unlikely that it seems a miracle
that they be chosen properly. What would be more comfortable is an evolution
rule that has no sensitive dependence on a choice of parameters that results in
the system naturally having a classical limit. By making the system choose the
parameters itself, on the basis of a rule that selects those that lead to the most
efficient propagation of information, we may make it possible for the system to
tune itself to criticality.
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9 A new approach to the problem of time

The idea that the parameters in the laws of physics may vary opens up a new
possibility for the role of time in the laws of physics. If the laws evolve in time,
then time must play a prefered role in the world, it cannot be just another
dimension and it cannot dissapear in a timeless block universe or “wavefunction
of the universe.” Thus, such a possibility forces us to examine the problem of time
in quantum cosmology. The following remarks, suggest that the kind of dynamics
we have discussed in this paper may indeed lead to a profoundly different view
of the role of time in quantum cosmology7

The problem of time in quantum cosmology is one of the key conceptual
problems faced by theoretical physics at the present time. Although it was first
raised during the 1950’s, it has resisted solution, despite many different kinds of
attempts[35–39]. Here we would like to propose a new kind of approach to the
problem. Basically, we will argue that the problem is not with time, but with
some of the assumptions that lead to the conclusion that there is a problem.
These are assumptions that are quite satisfactory in ordinary quantum mechan-
ics, but that are problematic in quantum gravity, because they may not be
realizable with any constructive procedure. In a quantum theory of cosmology
this is a serious problem, because one wants any theoretical construction that we
use to describe the universe to be something that can be realized in a finite time,
by beings like ourselves that live in that universe. If the quantum theory of cos-
mology requires a non-constructible procedure to define its formal setting, it is
something that could only be of use to a mythical creature of infinite capability.
One of the things we would like to demand of a quantum theory of cosmology
is that it not make any reference to anything at all that might be posited or
imagined to exist outside the closed system which is the universe itself.

We believe that this requirement has a number of consequences for the prob-
lem of constructing quantum a good quantum theory of cosmology. These have
been discussed in detail elsewhere [38,40,41]. Here we would like to describe one
more implication of the requirement, which appears to bear on the problem of
time.

We begin by summarizing briefly the argument that time is not present in
a quantum theory of cosmology. In section 3 we introduce a worry that one of
the assumptions of the argument may not be realizable by any finite procedure.
(Whether this is actually the case is not known presently.) We explain how the
argument for the disappearance of time would be affected by this circumstance.
Then we explain how a quantum theory of cosmology might be made which
overcomes the problem, but at the cost of introducing a notion of time and
causality at a fundamental level. As an example we refer to recent work on the
path integral for quantum gravity[42], but the form of the theory we propose is
more general, and may apply to a wide class of theories beyond quantum general
relativity.

7 The remained of this paper originally appeared as a separate preprint, and was
published on the www.edge.com website. As it is closely related to the subject of
this paper, we append it here as a last section.
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9.1 The argument for the absence of time

The argument that time is not a fundamental aspect of the world goes like this8.
In classical mechanics one begins with a space of configurations C of a system S.
Usually the system S is assumed to be a subsystem of the universe. In this case
there is a clock outside the system, which is carried by some inertial observer.
This clock is used to label the trajectory of the system in the configuration space
C. The classical trajectories are then extrema of some action principle, δI = 0.

Were it not for the external clock, one could already say that time has disap-
peared, as each trajectory exists all at once as a curve γ on C. Once the trajectory
is chosen, the whole history of the system is determined. In this sense there is
nothing in the description that corresponds to what we are used to thinking of
as a flow or progression of time. Indeed, just as the whole of any one trajectory
exists when any point and velocity are specified, the whole set of trajectories
may be said to exist as well, as a timeless set of possibilities.

Time is in fact represented in the description, but it is not in any sense a
time that is associated with the system itself. Instead, the t in ordinary classical
mechanics refers to a clock carried by an inertial observer, which is not part of
the dynamical system being modeled. This external clock is represented in the
configuration space description as a special parameterization of each trajectory,
according to which the equations of motion are satisfied. Thus, it may be said
that there is no sense in which time as something physical is represented in
classical mechanics, instead the problem is postponed, as what is represented is
time as marked by a clock that exists outside of the physical system which is
modeled by the trajectories in the configuration space C.

In quantum mechanics the situation is rather similar. There is a t in the
quantum state and the Schroedinger equation, but it is time as measured by an
external clock, which is not part of the system being modeled. Thus, when we
write,

ı~
d

dt
Ψ(t) = ĤΨ(t) (14)

the Hamiltonian refers to evolution, as it would be measured by an external
observer, who refers to the external clock whose reading is t

The quantum state can be represented as a function Ψ over the configuration
space, which is normalizable in some inner product. The inner product is another
a priori structure, it refers also to the external clock, as it is the structure that
allows us to represent the conservation of probability as measured by that clock.

When we turn to the problem of constructing a cosmological theory we face
a key problem, which is that there is no external clock. There is by definition
nothing outside of the system, which means that the interpretation of the the-
ory must be made without reference to anything that is not part of the system
which is modeled. In classical cosmological theories, such as general relativity
applied to spatially compact universes, or models such as the Bianchi cosmolo-
gies or the Barbour-Bertotti model[43,44], this is expressed by the dynamics
8 For more details and discussion see [35–39]
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having a gauge invariance, which includes arbitrary reparameterizations of the
classical trajectories. (In general relativity this is part of the diffeomorphism
invariance of the theory.) As a result, the classical theory is expressed in a way
that makes no reference to any particular parameterization of the trajectories.
Any parameterization is as good as any other, none has any physical meaning.
The solutions are then labeled by a trajectory, γ, period, there is no reference
to a parameterization.

This is the sense in which time may be said to disappear from classical
cosmological theories. There is nothing in the theory that refers to any time at
all. At least without a good deal more work, the theory speaks only in terms of
the whole history or trajectory, it seems to have nothing to say about what the
world is like at a particular moment.

There is one apparently straightforward way out of this, which is to try to
define an intrinsic notion of time, in terms of physical observables. One may
construct parameter independent observables that describe what is happening
at a point on the trajectory if that point can be labeled intrinsically by some
physical property. For example, one might consider some particular degree of
freedom to be an intrinsic, physical clock, and label the points on the trajectory
by its value. This works in some model systems, but in interesting cases such as
general relativity it is not known if such an intrinsic notion of time exists which
is well defined over the whole of the configuration space.

In the quantum theory there is a corresponding phenomenon. As there is no
external t with which to measure evolution of the quantum state one has instead
of (14) the quantum constraint equation

ĤΨ = 0 (15)

where Ψ is now just a function on the configuration space. Rather than describ-
ing evolution, eq. (15) generates arbitrary parameterizations of the trajectories.
The wavefunction must be normalizable under an inner product, given by some
density ρ on the configuration space. The space of physical states is then given
by (15) subject to

1 =

∫
C
ρΨ̄Ψ (16)

We see that, at least naively time has completely disappeared from the for-
malism. This has led to what is called the “problem of time in quantum cos-
mology”, which is how to either A) find an interpretation of the theory that
restores a role for time or B) provide an interpretation according to which time
is not part of a fundamental description of the world, but only reappears in an
appropriate classical limit.

There have been various attempts at either direction. We will not describe
them here, except to say that, in our opinion, so far none has proved completely
satisfactory9. There are a number of attempts at A) which succeed when applied

9 For good critical reviews that deflate most known proposals, see [35,36].
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to either models or the semiclassical limit, but it is not clear whether any of them
overcome technical obstacles of various kinds when applied to the full theory.
The most well formulated attempt of type B), which is that of Barbour[39], may
very well be logically consistent. But it forces one to swallow quite a radical
point of view about the relationship between time and our experience.

Given this situation, we would like to propose that the problem may be
not with time, but with the assumptions of the argument that leads to time
being absent. Given the number of attempts that have been made to resolve
the problem, which have not so far led to a good solution, perhaps it might be
better to try to dissolve the issue by questioning one of the assumptions of the
argument that leads to the statement of the problem. This is what we would like
to do in the following.

9.2 A problem with the argument for the disappearance of time

Both the classical and quantum mechanical versions of the argument for the
disappearance of time begin with the specification of the classical configuration
space C. This seems an innocent enough assumption. For a system of N particles
in d dimensional Euclidean space, it is simply RNd. One can then find the cor-
responding basis of the Hilbert space by simply enumerating the Fourier modes.
Thus, for cases such as this, it is certainly the case that the configuration space
and the Hilbert space structure can be specified a priori.

However, there are good reasons to suspect that for cosmological theories it
may not be so easy to specify the whole of the configuration or Hilbert space. For
example, it is known that the configuration spaces of theories that implement
relational notions of space are quite complicated. One example is the Barbour-
Bertotti model[43,44], whose configuration space consists of the relative distances
between N particles in d dimensional Euclidean space. While it is presumably
specifiable in closed form, this configuration space is rather complicated, as it is
the quotient of RNd by the Euclidean group in d dimensions[39].

The configuration space of compact three geometries is even more compli-
cated, as it is the quotient of the space of metrics by the diffeomorphism group.
It is known not to be a manifold everywhere. Furthermore, it has a preferred
end, where the volume of the universe vanishes.

These examples serve to show that the configuration spaces of cosmological
theories are not simple spaces like RNd, but may be considerably complicated.
This raises a question: could there be a theory so complicated that its space of
configurations is not constructible through any finite procedure? For example, is
it possible that the topology of an infinite dimensional configuration space were
not finitely specifiable? And were this the case, what would be the implications
for how we understand dynamics10?

10 There is an analogous issue in theoretical biology. The problem is that it does not
appear that a pre-specifiable set of “functionalities” exists in biology, where pre-
specifiable means a compact description of an effective procedure to characterize
ahead of time, each member of the set[45,41]. This problem seems to limit the pos-
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We do not know whether in fact the configuration space of general relativity is
finitely specifiable. The problem is hard because the physical configuration space
is not the space of three metrics. It is instead the space of equivalence classes of
three metrics (or connections, in some formalisms) under diffeomorphisms. The
problem is that it is not known if there is any effective procedure which will label
the equivalence classes.

One can in fact see this issue in one approach to describing the configuration
space, due to Newman and Rovelli[46]. There the physical configuration space
consists of the diffeomorphism equivalence classes of a set of three flows on a
three manifold. (These come from the intersections of the level surfaces of three
functions.) These classes are partially characterized by the topologies of the
flow lines of the vector fields. We may note that these flow lines may knot and
link, thus a part of the problem of specifying the configuration space involves
classifying the knotting and linking among the flow lines.

Thus, the configuration space of general relativity cannot be completely de-
scribed unless the possible ways that flow lines may knot and link in three
dimensions are finitely specifiable. It may be noted that there is a decision pro-
cedure, due to Hacken, for knots, although it is very cumbersome[47]. However,
it is not obvious that this is sufficient to give a decision procedure for configu-
rations in general relativity, because there we are concerned with smooth data.
In the smooth category the flow lines may knot and link an infinite number of
times in any bounded region. The resulting knots may not be classifiable. All
that is known is that knots with a finite number of crossings are classifiable.
If these is no decision procedure to classify the knotting and linking of smooth
flow lines then the points of the configuration space of general relativity may not
be distinguished by any decision procedure. This means that the configuration
space is not constructible by any finite procedure.

When we turn from the classical to the quantum theory the same issue arises.
First of all, if the configuration space is not constructible through any finite
procedure, then there is no finite procedure to define normalizable wave functions
on that space. One might still wonder whether there is some constructible basis
for the theory. Given the progress of the last few years in quantum gravity
we can investigate this question directly, as we know more about the space of
quantum states of general relativity than we do about the configuration space
of the theory. This is because it has been shown that the space of spatially
diffeomorphism invariant states of the quantum gravitational field has a basis
which is in one to one correspondence with the diffeomorphism classes of a
certain set of embedded, labeled graphs Γ , in a given three manifold Σ [3,4].
These are arbitrary graphs, whose edges are labeled by spins and whose vertices
are labeled by the distinct ways to combine the spins in the edges that meet
there quantum mechanically. These graphs are called spin networks, they were

sibilities of a formal framework for biology in which there is a pre-specified space of
states which describe the functionalities of elements of a biological system. Similarly,
one may question whether it is in principle possible in economic theory to give in
advance an a priori list of all the possible kinds of jobs, or goods or services[45].
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invented originally by Roger Penrose[48], and then discovered to play this role
in quantum gravity11.

Thus, we cannot label all the basis elements of quantum general relativity
unless the diffeomorphism classes of the embeddings of spin networks in a three
manifold Σ may be classified. But it is not known whether this is the case.
The same procedure that classifies the knots is not, at least as far as is known,
extendible to the case of embeddings of graphs.

What if it is the case that the diffeomorphism classes of the embeddings of
spin networks cannot be classified? While it may be possible to give a finite
procedure that generates all the embeddings of spin networks, if they are not
classifiable there will be no finite procedure to tell if a given one produced is or is
not the same as a previous network in the list. In this case there will be no finite
procedure to write the completeness relation or expand a given state in terms
of the basis. There will consequently be no finite procedure to test whether an
operator is unitary or not. Without being able to do any of these things, we
cannot really say that we have a conventional quantum mechanical description.
If spin networks are not classifiable, then we cannot construct the Hilbert space
of quantum general relativity.

In this case then the whole set up of the problem of time fails. If the Hilbert
space of spatially diffeomorphism invariant states is not constructible, then we
cannot formulate a quantum theory of cosmology in these terms. There may be
something that corresponds to a “wavefunction of the universe” but it cannot
be a vector in a constructible Hilbert space. Similarly, if the configuration space
C of the theory is not constructible, then we cannot describe the quantum state
of the universe in terms of a normalizable function on C.

We may note that a similar argument arises for the path integral formulations
of quantum gravity. It is definitely known that four manifolds are not classifiable;
this means that path integral formulations of quantum gravity that include sums
over topologies are not constructible through a finite procedure[51].

Someone may object that these arguments have to do with quantum general
relativity, which is in any case unlikely to exist. One might even like to use
this problem as an argument against quantum general relativity. However, the
argument only uses the kinematics of the theory, which is that the configuration
space includes diffeomorphism and gauge invariant classes of some metric or
connection. It uses nothing about the actual dynamics of the theory, nor does
it assume anything about which matter fields are included. Thus, the argument
applies to a large class of theories, including supergravity.

9.3 Can we do physics without a constructible state space?

What if it is the case that the Hilbert space of quantum gravity is not con-
structible because embedded graphs in three space are not classifiable? How do

11 For a review of these developments see [11]. These results have also more recently
been formulated as theorems in a rigorous formulation of diffeomorphism invariant
quantum field theories[50,49].
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we do physics? We would like to argue now that there is a straightforward an-
swer to this question. But it is one that necessarily involves the introduction of
notions of time and causality.

One model for how to do physics in the absence of a constructible Hilbert
space is seen in a recent formulation of the path integral for quantum gravity in
terms of spin networks by Markopoulou and Smolin[42]12. In this case one may
begin with an initial spin network Γ0 with a finite number of edges and nodes
(This corresponds to the volume of space being finite.) One then has a finite
procedure that constructs a finite set of possible successor spin networks Γα1 ,
where α labels the different possibilities. To each of these the theory associates
a quantum amplitude AΓ0→Γα

1
.

The procedure may then be applied to each of these, producing a new set
Γαβ2 . Here Γαβ2 labels the possible successors to each of the Γα1 . The procedure
may be iterated any finite number of times N , producing a set of spin networks
SNΓ0 that grow out of the initial spin network Γ0 after N steps. SNΓ0 is itself a
directed graph, where two spin networks are joined if one is a successor of the
other. There may be more than one path in SNΓ0 between Γ0 and some spin
network Γfinal. The amplitude for Γ0 to evolve to Γfinal is then the sum over
the paths that join them in SNΓ0 , in the limit N → ∞ of the products of the
amplitudes for each step along the way.

For any finite N , SNΓ0 has a finite number of elements and the procedure
is finitely specifiable. There may be issues about taking the limit N → ∞, but
there is no reason to think that they are worse than similar problems in quantum
mechanics or quantum field theory. In any case, there is a sense in which each
step takes a certain amount of time, in the limit N → ∞ we will be picking up
the probability amplitude for the transition to happen in infinite time.

Each step represents a finite time evolution because it corresponds to certain
causal processes by which information is propagated in the spin network. The
rule by which the amplitude is specified satisfies a principle of causality, by which
information about an element of a successor network only depends on a small
region of the its predecessor. There are then discrete analogues of light cones
and causal structures in the theory. Because the geometry associated to the spin
networks is discrete[3], the process by which information at two nearby nodes
or edges may propagate to jointly influence the successor network is finite, not
infinitesimal.

In ordinary quantum systems it is usually the case that there is a non-
vanishing probability for a state to evolve to an infinite number of elements
of a basis after a finite amount of time. The procedure we’ve just described
then differs from ordinary quantum mechanics, in that there are a finite number
of possible successors for each basis state after a finite evolution. The reason
is again causality and discreteness: since the spin networks represent discrete

12 This followed the development of a Euclidean path integral by Reisenberger[52] and
by Reisenberger and Rovelli[53]. Very interesting related work has also been done by
John Baez[54]. We may note that the theory described in [42] involves non-embedded
spin networks, which probably are classifiable, but it can be extended to give a theory
of the evolution of embedded spin networks.
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quantum geometries, and since information must only flow to neighboring sites
of the graph in a finite series of steps, at each elementary step there are only a
finite number of things that can happen.

We may note that if the Hilbert space is not constructible, we cannot ask if
this procedure is unitary. But we can still normalize the amplitudes so that the
sum of the absolute squares of the amplitudes to evolve from any spin network
to its successors is unity. This gives us something weaker than unitarity, but
strong enough to guarantee that probability is conserved locally in the space of
configurations.

To summarize, in such an approach, the amplitude to evolve from the initial
spin network Γ0 to any element of SNΓ0 , for large finite N is computable, even if
it is the case that the spin networks cannot be classified so that the basis itself
is not finitely specifiable. Thus, such a procedure gives a way to do quantum
physics even for cases in which the Hilbert space is not constructible.

We may make two comments about this form of resolution of the problem.
First, it necessarily involves an element of time and causality. The way in which
the amplitudes are constructed in the absence of a specifiable basis or Hilbert
structure requires a notion of successor states. The theory never has to ask about
the whole space of states, it only explores a finite set of successor states at each
step. Thus, a notion of time is necessarily introduced.

Second, we might ask how we might formalize such a theory. The role of the
space of all states is replaced by the notion of the successor states of a given
network. The immediate successors to a graph Γ0 may be called the adjacent
possible[41]. They are finite in number and constructible. They replace the ide-
alization of all possible states that is used in ordinary quantum mechanics. We
may note a similar notion of an adjacent possible set of configurations, reach-
able from a given configuration in one step, plays a role in formalizations of the
self-organization of biological and other complex systems[41].

In such a formulation there is no need to construct the state space a priori,
or equip it with a structure such as an inner product. One has simply a set of
rules by which a set of possible configurations and histories of the universe is
constructed by a finite procedure, given any initial state. In a sense it may be
said that the system is constructing the space of its possible states and histories
as it evolves.

Of course, were we to do this for all initial states, we would have constructed
the entire state space of the theory. But there are an infinite number of possible
initial states and, as we have been arguing, they may not be classifiable. In this
case it is the evolution itself that constructs the subspace of the space of states
that is needed to describe the possible futures of any given state. And by doing
so the construction gives us an intrinsic notion of time.

9.4 Implications

We must emphasize first of all that these comments are meant to be prelim-
inary. Their ultimate relevance rests partly on the issue of whether there is a
decision procedure for spin networks (or perhaps for some extension of them that
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turns out to be relevant for real quantum gravity[11].). But more importantly,
it suggests an alternative type of framework for constructing quantum theories
of cosmology, in which there is no a priori configuration space or Hilbert space
structure, but in which the theory is defined entirely in terms of the sets of ad-
jacent possible configurations, accessible from any given configuration. Whether
such formulations turn out to be successful at resolving all the problems of quan-
tum gravity and cosmology is a question that must be left for the future13.

There are further implications for theories of cosmology, if it turns out to be
the case that their configuration space or state space is not finitely constructible.
One is to the problem of whether the second law of thermodynamics applies at a
cosmological scale. If the configuration space or state space is not constructible,
then it is not clear that the ergodic hypothesis is well defined or useful. Neither
may the standard formulations of statistical mechanics be applied. What is then
needed is a new approach to statistical physics based only on the evolving set of
possibilities generated by the evolution from a given initial state. It is possible
to speculate whether there may in such a context be a “fourth law” of ther-
modynamics in which the evolution extremizes the dimension of the adjacent
possible, which is the set of states accessible to the system at any stage in its
evolution[41].

Finally, we may note that there are other reasons to suppose that a quan-
tum cosmological theory must incorporate some mechanisms analogous to the
self-organization of complex systems[40]. For example, these may be necessary
to tune the system to the critical behavior necessary for the existence of the
classical limit[56,42]. This may also be necessary if the universe is to have suffi-
cient complexity that a four manifolds worth of spacetime events are completely
distinguished by purely relational observables[38,40]. The arguments given here
are complementary to those, and provide yet another way in which notions of
self-organization may play a role in a fundamental cosmological theory.
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Pierre-et-Marie-Curie - CNRS ESA 7065, Tour 22, 4-ème étage, Bôite 142
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Abstract. We propose a short introductory overview of the non-commutative exten-
sions of several classical physical theories. After a general discussion of the reasons
that suggest that the non-commutativity is a major issue that will eventually lead to
the unification of gravity with other fundamental interactions, we display examples of
non-commutative generalizations of known geometries.

Finally we discuss the general properties of the algebras that could become gen-
eralizations of algebras of smooth functions on Minkowskian (Riemannian) manifolds,
needed for the description of Quantum Gravity.

1 Deformations of space-time and phase space geometries

The two most important branches of modern physics created in the beginning
of this century, the General Relativity and Quantum Theory, possess their well-
defined classical counterparts, the Newtonian gravity theory mechanics, which
are obtained as limits of these theories when the parameters c−1 or ~ The math-
ematical expression of this fact is formulated in terms of the deformations of the
respective structures. The notion of deformation plays the central rôle in modern
attempts which try to generalize the geometrical description of physical realm.

To be more precise, we can cite the example of the relation existing between
the Lorentz and the Galilei groups: the Lorentz group can be considered as
deformation of the Galilei group, with the characteristic parameter c−1; when
this parameter tends to zero, the Lorentz group is said to undergo the contrac-
tion into the Galilei group. Similarly, the quantization procedure proposed by
J.E.Moyal [1] is a deformation of the usual Poisson algebra which is contracted
back to it when the characteristic parameter of deformation which is here the
Planck constant h tends to zero. Finally, Special Relativity may be considered as
a contraction of General Relativity when the characteristic parameter G tends to
zero (although some space-times different from the Minkowskian one can appear
when the Ricci tensor is put to zero).

Now, with three fundamental constants of Nature, h, G and c−1 serving as
deformation parameters, one can imagine seven different contractions of the hy-
pothetical unified theory that would deserve the name of “Relativistic Quantum
Gravity”, and which is yet to be invented. The seven contractions correspond to
the vanishing of:

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 130−157, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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a) one of the three parameters, i.e h, G, or c−1 only;
b) two parameters at once, i.e.(h and G), (h and c−1), and (G and c−1);
c) all the three parameters at once, i.e. (h, G and c−1).

The following Table shows the relations between the corresponding theories,
as well as their usual denominations (when we know them...). We did not take
into account the fact that taking the double limits might be non-commutative,
which cannot be excluded a priori and would have made our diagram even more
complicated.

Two of the theories displayed here have not found their realization yet: the
“Relativistic Quantum Gravity” and the “Non-Relativistic Quantum Gravity”.
It is not at all clear whether these hypothetical theories can be realized without
introducing some new deformation parameter depending on a new physical con-
stant, and whether this constant should be independent or related to the three
fundamental constants h, c and G or not.

It is also amusing to note that our diagram is three-dimensional - is it just
a coincidence that we happen to live in three space dimensions, too? In the
figure, the contractions (symbolized by the arrows coinciding with the edges of
the cube) relate two-by-two different space-time or phase space geometries. The
best way to describe a geometry is, in our sense, to define the set of variables
(forming an algebra) that in a natural way would generalize the algebra of local
coordinates in these spaces.

P.A.M.Dirac was already aware of the possibility of a radical modification
of geometrical notions, and in his fundamental papers written in 1926 [2] he
evokes the possibility of describing the phase space physics in terms of a non-
commutative analogue of the algebra of functions, which he referred to as the
“quantum algebra”, together with its derivations, which he called “quantum
differentiations”. Of course, this kind of geometry seemed strange and even
useless from the point of view of General Relativity. Einstein thought that further
problems of physics should be solved by subsequent development of geometrical
ideas, and it seemed to him that to have a× b not equal to b× a was something
that does not fit very well with geometry as he understood it [3]

During several decades, mostly in the sixties and the seventies, a lot of ef-
forts have been made in order to find a unifying approach to both these great
theories.In doing so, people either tried to generalize one of the two theories so
that the other one would follow, or tried to merge them together via embedding
into some more general unified theory. Most of the activities in this field rather
belonged to the first category.

The Hamiltonian formulation of General Relativity by R.Arnowitt, S.Deser
and C.Misner [4], and later the Wheeler–De Witt equation which generalizes
Schrödinger’s equation for quantum wave functions describing the state of a 3-
dimensional geometry of the Universe [5] can be considered as a first attempt
to quantize the General Relativity. The geometric quantization developed by
J.M.Souriau, D.Simms, and B.Kostant ([6], [7], [8]) tried to derive the rules of
quantum mechanics by interpreting the observables and state vectors as elements
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of algebras of operators and functions defined on classical manifolds with suffi-
ciently rich geometry, (e.g. symplectic manifolds, fibre bundles, jet spaces).

“Non-Relativistic

Quantum

Gravity”

“Relativistic

Quantum

Gravity”

?

?

?

?

?

?

?

?

~ → 0 ~ → 0

~ → 0 ~ → 0

G→ 0 G→ 0

G→ 0

G→ 0

c−1 → 0

c−1 → 0

c−1 → 0

c−1 → 0

Newton’s Gravity

and

Mechanics

General

Relativity

Non-relativistic

Quantum

Mechanics

Relativistic

Quantum Field

Theory

Classical Mechanics

without gravity

Special

Relativity

Eight limits of fundamental physical theories

Two limits (marked in italics) are still to be invented

Simultaneous consideration of the two most important new physical theories
of this century, the General Relativity and Quantum Mechanics, did not bring
a common tool for the description of the nature of spacetime at the microscopic
level. The General Relativity develops our knowledge about global properties of
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space and time at very large distances, and raises the questions concerning the
global topology of the Universe.

The methods of Differential Geometry which are the best adapted as the
mathematical language of this theory, are very different from the methods of
Quantum Physics, in which one studies the properties of the algebra of observ-
ables, considering the state vectors, as well as geometric points and trajectories,
as artefacts and secondary notions. This approach has been inspired by the works
of John von Neumann [9], and has much in common with the non-commutative
geometry, where the very notion of a point loses its meaning.

A strong flavor of non-commutativity is also present in A. Ashtekar’s ap-
proach to quantum gravity, in which the notion of coordinates becomes sec-
ondary, the only intrinsic information being encoded in the loop space (see, e.g.
in A. Ashtekar [10], or C. Rovelli [11])

In the next section, we shall give a few arguments in favor of the hypothesis
that the realization of a theory taking into account quantum effects in gravitation
should also lead to the abandon of usual notion of coordinates and differential
manifolds and to the introduction of non-commutative extensions of algebras of
smooth functions on manifolds. We shall also see that such algebras can act on
free modules, which becomes a natural generalization of gauge theories described
mathematically as connections and curvatures on fibre bundles.

2 Why the coordinates should not commute
at Planck’s scale

There are several well-known arguments which suggest that the dynamical inter-
play between Quantum Theory and Gravitation should lead to a non-commutative
version of space-time. Let us recall the few ones that are cited most frequently:

* A semi-classical argument that involves black-hole creation at very small
distances: as a matter of fact, if the General Relativity remains valid at the
Planck scale, then any localization of events should become impossible at the

distances of the order of λP =
√

~G
c3 . Indeed, according to quantum mechanical

principles, lo localize an event in space-time within the radius ∆xµ ∼ a, one
need to employ the energy of the order a−1. When a becomes too small, the cre-
ation of a mini black hole becomes possible, thus excluding from the observation
that portion of the space-time and making further localization meaningless.

Therefore, the localization is possible only if we impose the following limita-
tion on the time interval:

∆x0 (Σ∆xk) ≥ λ2
P and ∆xk∆xm ≥ λ2

P . (1)

in order to avoid the black hole creation at the microscopic level.

** The topology of the space-time should be sensitive to the states of
the fields which are in presence - and vice versa, quantum evolution of any
field, including gravity, should take into account all possible field configurations,
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also corresponding to the fields existing in space-times with radically different
topologies (a creation of a black hole is but the simplest example; one should
also take into account other “exotic” configurations, such as multiple Einstein-
Rosen bridges (the so-called “wormholes”, leading in the limit of great N to the
space-time foam.

Now, as any quantum measurement process may also lead to topological
modifications, again the coordinates of an event found before and after any
measurement can no more be compared, because they might refer to uncompati-
ble coordinate patches in different local maps. As a result, quantum measures of
coordinates themselves become non-commutative, and the algebra of functions
on the space-time, supposed to contain also all possible local coordinates, must
be replaced by its non-commutative extension, better adapted to describe the
space-time foam.

*** Since the coordinates xµ are endowed with a length scale, the met-
ric must enter at certain stage in order to measure it. After quantization, the
components of the tensor gµν become a set of dynamical fields, whose behaviour
is determined by the propagators and, at least at the lowest perturbative level,
by two-point correlation functions. As any other field, the components of the
metric tensor will display quantum fluctuations, making impossible precise mea-
surements of distances, and therefore, any precise definition of coordinates.

Our aim here is not to discuss all possible arguments suggesting that at the
Planck scale not only the positions and momenta do not commute anymore, but
also the coordinates themselves should belong to a non-commutative algebra. In
what follows, we shall take it for granted that such is the case, and shall expose
in a concise way, on the example of the simplest finite non-commutative algebra,
which is the algebra of complex n × n matrices, how almost all the notions of
usual differential geometry can be extended to the non-commutative case. We
shall also show how the gauge theories and the analogs of the fibre bundle spaces
and Kaluza-Klein geometries can be generalized in the non-commutative setting.

Finally, as our main subject is the hypothetical Quantum Gravity theory, and
because it has to have also a limit as Relativistic Field theory when gravity is
switched off, we shall analyze the conequences of the Poincaré invariance that
must be imposed on any theory of this type.

3 Non-commutative differential geometry

In the examples of non-commutative generalizations of spaces of states or of al-
gebras of observables, we have looked up to now only at the linear cases. A most
general non-commutative geometry should imitate the situations encountered in
the ordinary differential geometry of manifolds. Therefore, we should replace the
algebra of smooth functions on a manifold, (the maximal ideals of this algebra
can be identified as points of the corresponding manifold) by an more general
associative algebra, which can be non-commutative. The derivations of this al-
gebra will naturally generalize the notion of vector fields; their dual space will
generalize the fields of 1-forms, and one can continue as far as possible, trying to
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construct the analogues of a metric, integration, volume element, Hodge duality,
Lie derivatives, connection and curvature, and so forth. It is amazing how almost
all of these objects known from the classical version of differential geometry find
their counterparts in the non-commutative case.

The differential algebras of this type have been studied by A.Quillen [12],
A.Connes [13] and M.Dubois-Violette [14]; their application to new mathemat-
ical models of the gauge theories, including the standard model of electroweak
interactions of Weinberg and Salam, has been worked out by M.Dubois-Violette
et al [15],[16], by A.Connes and J.Lott [17], R.Coquereaux et al [18], and many
other authors since. Here we shall give the simplest example of realization of the
non-commutative geometry proposed in [15],[16], realized with the algebra of
complex n× n matrices, Mn(C). Any element of Mn(C) can be represented as
a linear combination of the unit n×n matrix 1 and (n2 − 1) hermitian traceless
matrices Ek, k = 1,2, . . . ,(n2 − 1):

B = β 1 +
∑
αkEk (2)

One can choose the basis in which the following relations hold:

EkEm = (
1

n
)gkm1 + SjkmEj − (

i

2
)CjkmEj (3)

with real coefficients satisfying Sjkm = Sjmk, Skkm = 0, Cjkm = −Cjmk, Ckkm = 0,
and gkm = CpklC

l
pm. Then Cmkl are the structure constants of the Lie group

SL(n,C), and gkl its Killing-Cartan metric tensor. All the derivations of the
algebra Mn(C) are interior, i.e. the basis of the derivations is given by the
operators ∂k such that

∂kEm = ad(iEk)Em = i[Ek, Em] = ClkmEl (4)

By virtue of the Jacobi identity, we have

∂k∂m − ∂m∂k = Clkm∂l (5)

The linear space of derivations of Mn(C), denoted by Der(Mn(C), is not a left
module over the algebra Mn(C) - this is the first important difference with re-
spect to the usual differential geometry, in which a vector field can be multiplied
on the left by a function, producing a new vector field. The canonical basis of
1-forms dual to the derivations ∂k is defined formally by the relations

θk(∂m) = δkm1 (6)

These 1-forms span a left module over Mn(C), i.e. Elθ
k is also a well-defined

1-form; indeed, Elθ
k(∂m) = Elδ

k
m1 = Elδ

k
m

The exterior differential d is defined as usual, first on the 0-forms (“functions”)
by the identity

df(X) = Xf, (7)
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with f a function, X an arbitrary vector field. Here we have

(d1)(∂m) = ∂m1 = ad(iEm)1 = i[Em, 1] = 0 (8)

so that d1 = 0, and

dEk(∂m) = ∂m(Ek) = i[Ek, Em] = ClmkEl (9)

Because the Lie algebra SL(n,C) is semi-simple, the matrices Clkm are non-
degenerate, and the above relation can be solved in θk’s giving the explicit ex-
pression

dEk = ClkmElθ
m (10)

The fact that d2 = 0 follows then directly from the Jacobi identity. The Grass-
mann algebra of p-forms is defined as usual, with the wedge product

θk ∧ θm = (
1

2
)(θk ⊗ θm − θm ⊗ θk) (11)

We have then

dθk + (
1

2
)Ckmlθ

mθl = 0 (12)

If we define the canonical 1-form θ =
∑
Ekθ

k, we can easily prove that it is
coordinate-independent. Moreover, it satisfies the important relation

dθ + θ ∧ θ = 0 (13)

Let ω be a p -form. The anti-derivation iX with respect to a vector field X can
be defined as usual,

(iXω)(X1, X2, . . . , Xp−1) = ω(X,X1, X2, . . . , Xp−1) (14)

The Lie derivative of a p -form ω with respect to a vector field X is defined as

LXω = (iX d+ d iX)ω (15)

It is easy to check now that the 2-form Ω = dθ is invariant with respect to the
derivations of A, i.e. that

LXΩ = 0 (16)

for any vector field X belonging to Der(Mn(C)). The 2-form Ω is also non-
degenerate, and it is a closed 2-form by definition, because

dΩ = d2θ = 0 (17)

The 2-form Ω defines a Hamiltonian structure in the algebra Mn(C) in the
following sense:
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Let f ε Mn(C) be an element of our algebra; then Hamf is the Hamiltonian
vector field of f defined by the equality

Ω(Hamf , X) = X f (18)

for any X belonging to Der(Mn(C)) The Poisson bracket of two “functions”
(observables) f and g is then defined as

{f, g} = Ω(Hamf , Hamg) (19)

A simple computation shows then that

{Ek, Em} = Ω(∂k, ∂m) = i [Ek, Em] (20)

Therefore, in our simple version of non-commutative geometry, classical and
quantum mechanics merge into one and the same structure: the Poisson bracket
of any two matrix “functions” (observables) is equal, up to a factor that can be
chosen as the Planck constant h , to their commutator .

This simple and beautiful picture is of course somewhat perturbed in the
case of infinite-dimensional algebras for which not all the derivations are interior
and might have other representations than the commutator with an observable.

The volume element induced by the canonical Cartan-Killing metric and the
corresponding Hodge duality ( can be also introduced in a classical manner. The
volume element is given by

η =
1

(n2 − 1)!
εi1i2...in2−1

θi1 ∧ θi2 ∧ · · · ∧ θin2−1 (21)

Any n2 − 1 -form is proportional to the volume element η ; the integral of such
a form will be defined as the trace of the matrix coefficient in front of η . Then
the scalar product is readily introduced for any couple of p -forms α and β as
follows:

(α, β) =

∫
(α ∧ (β) (22)

With this formalism we can generalize the notions of gauge fields if we use
the non-commutative matrix algebra as the analogue of the algebra of functions
defined on a vertical space of a principal fibre bundle. Then we will be able to
compute lagrangian densities that may be used in the variational principle pro-
ducing dynamical field equations.

We shall see in the next section how this formulation of gauge theories con-
tains besides the SU(n) gauge fields also scalar multiples in the adjoint repre-
sentation, which have the rôle of the Higgs fields in standard electroweak theory.

4 Non-commutative analog of Kaluza-Klein
and gauge theories

At this stage we can introduce a non-commutative analogue of Kaluza-Klein type
theory, which will lead to a generalization of gauge field theories. In ordinary
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differential geometry the fact of using a Cartesian product of two differential
manifolds, or a fibre bundle locally diffeomorphic with such a product, can be
translated into the language of the corresponding function algebras; as a matter
of fact, in the case of the Cartesian product of two manifolds, the algebra of
functions defined on it is the tensorial product of algebras of functions defined
on each of the manifolds separately.

Consider the space-time manifold V4 with its algebra of smooth functions
C∞(V4). Let us define the tensor product

A = C∞(V4) ⊗Mn(C) (23)

It can be shown (cf.[13]) that

Der(A) = [Der(C∞(V4)) ⊗ 1] ⊕ [C∞(V4) ⊗ Der(Mn(C)] (24)

In other words, a general derivation in our tensor product algebra replacing
the algebra of smooth functions on a fibre bundle space, can be written as the
following vector field

X = Xµ(x)∂µ + ξk(x)∂k (25)

with µ, ν = 0, 1, 2, 3 ; k, l = 1, 2, . . . , (n2 − 1) . A general 1-form defined on such
vector fields splits naturally into four different components:

A = A0
µ(x)1dxµ +Akµ(x)Ekdx

µ +B0
m(x)1θm +Bk

m(x)Ekθ
m (26)

The exterior differential of a 1-form A takes into account the two kinds of dif-
ferentiation; e.g. for a general matrix-valued 0-form (“function”) Φ = Φ01(x) +
Φm(x)Em we have

d(Φ) = (∂µΦ
0)dxµ + (∂µΦ

m)Emdx
µ + ΦmClkmElθ

k (27)

The notion of covariant derivation can be introduced quite naturally by consider-
ing a free (right) hermitian module H over the algebra A. If we choose a unitary
element e in H, then any element of H can be represented as Φ = eB, with
B ∈ A. Then the covariant derivative must have the following basic property:

∇(ΦD) = (∇Φ)D + Φ⊗ dD (28)

for arbitrary Φ ε H , D ε A Now, if Φ = eB, we shall have

∇Φ = (∇e)B + e⊗ dB, (29)

and there exists a unique element α ε Λ1(Mn(C)) such that

∇e = e⊗ dα (30)

satisfying the hermiticity condition ᾱ = −α. The elements B and α are called
the components of the field Φ and the connection ∇ in the gauge e.

Let U be a unitary matrix from the algebra A. Under a change of gauge

e −→ eU (31)
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the components B and α transform as follows:

B −→ U−1B ,α −→ U−1αU + U−1dU (32)

This is the analogue of the gauge theory in the non-commutative case. When
applied to the connection 1-form (denoted now A instead of α ), these principles
lead to the following expression of the gauge field tensor F = dA+A ∧ A :

F = (F 0
µν1+GkµνEk)dxµ∧dxν +[(DµB

0
l )1+(DµB

m
l Em)]dxµ∧θl+GmklEmθk∧θl

where

F 0
µν = ∂µA

0
ν − ∂νA0

µ (33)

represents the abelian U(1)-gauge field;

Gkµν = ∂µA
k
ν − ∂νAkµ + CklmA

l
µA

m
ν (34)

represents the SU(2)-gauge field;

DmuB
0
k = (

1

m
)(∂µB

0
k) (35)

is the derivative of the scalar triplet B0
k ;

DµB
m
k = (

1

m
)(∂µB

m
k + CmsrA

s
µB

r
k) (36)

is the covariant derivative of the scalar (Higgs type) multiplet Bmk ; finally,

Gmkl = (
1

m2
)(CpklB

m
p − CmsrBs

kB
r
l ) (37)

represents the potential contribution of the Higgs multiplet.
Here m is the dimensional parameter (dim[m] = cm−1) introduced in order

to give the proper dimension to the 1-forms θk. The parameter m can be later
related to the characteristic mass scale of the theory. The generalized action
integral is equal - in conformity with the definition of integration on the algebra
of p-forms in the non-commutative case - to the trace of the integral over space-
time V4 of the expression F ∧ (F :

Tr

∫
(F ∧ (F )d4x (38)

The multiplet of scalar fields Bml plays here the rôle of the symmetry-breaking
Higgs-Kibble field, whose quartic potential appearing in the last part of the ac-
tion integrand possesses multiple local minima or maxima.

In this example, when all other fields are set equal to 0, there exist sev-
eral configurations of Bm

l corresponding to vacuum states representing different
gauge orbits. Indeed, it is easy to see that Gmkl = 0 not only when Bm

l = 0, but
also for Bm

l = δml . These two vacua can not be transformed one into another by
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means of a gauge transformation, which is a novel feature when compared with
the known classical versions of gauge theory coupled with Higgs fields.

Although this generalization of gauge theory including a non-commutative
sector of differential geometry contains naturally the gauge group SU(2)×U(1),
the Higgs multiplet arising here does not have the usually required properties, i.e.
it is not a doublet of complex scalar fields coupled in a different way to the left-
and right-handed fermions; we have instead a tensor multiplet Bml that admits
16 different vacuum configurations, most of them degenerate saddle points in
the parameter space. Also the mass spectrum of bosons appearing in the theory
is not satisfactory. Developing the bosonic fields of the model, A0

µ, Akµ and B0
k ,

and linearizing the equations around the vacua given by Bml = 0 or Bm
l = δml

respectively, we obtain on the gauge orbit Bml = 0:
- masses of A0

µ and Akµ equal zero,
- masses of B0

l and Bm
l all equal to

√
nm;

whereas on the gauge orbit Bm
l = δml :

- the U(1) gauge field A0µ remains massless while the SU(2) - gauge field
acquires the mass

√
2nm ;

- the scalar multiplet B0
m acquires the mass

√
2m, and the Higgs multiplet

itself, Bml develops a mass spectrum with values 0,
√

2m and 2
√

2m .
which makes this version of unified SU(2) × U(1) theory unrealistic.

More realistic versions of non-commutative gauge models, reproducing quite
well all the properties of the electroweak interactions required by the experiment,
have been proposed by A.Connes and M.Lott [17], R. Coquereaux et al. [18], by
M.Dubois-Violette et al., [15], [16], and by J.Fröhlich et al., [19]. In all these
models the non-commutative algebra of complex matrices is tensorized with a
Z2-graded algebra, which in simplest realisation can be conceived as algebra of
2×2 matrices that splits into two linear subspaces called “even” (corresponding
to diagonal matrices) and “odd” (corresponding to the off-diagonal matrices),
with respective grades being 0 and 1, which under matrix multiplication add up
modulo 2. The exterior derivations change the grade of an element by 1, and
satisfy the graded Leibniz rule

d(AB) = (dA)B + (−1)grad(A)grad(B)AdB (39)

This enables one to represent the connection form (interpreted as the gauge-field
potential) in the following form: (

A W+

W− Z

)
(40)

where the gauge fields A and Z belong to the even part of the algebra, while
the fields W+ and W− belong to the odd part; moreover, all these fields are
themselves 2 × 2 matrix-valued 1-forms. Developing this theory around the ap-
propriately chosen vacuum configuration one can quite correctly reproduce the
mass spectrum, with the mass of neutral Z -boson 2√

3
times bigger than the

mass of the chargedW - boson, which corresponds to the Weinberg angle of 30o.
More details can be found in the papers cited above.
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At this point one may try to imagine what a non-commutative extension
of the General Relativity could look like ? Since a long time there exist many
approaches in which the General Relativity was considered as a gauge theory,
with gauge group being the infinite-dimensional group of diffeomorphisms of
four-dimensional Riemannian manifolds. However, with the gauge group of this
size little could be done in matter of computation and prediction, especially on
the quantum level.

A more realistic direction consists in exploring the properties of linear approx-
imation of a more complicated final version of the theory. Recently, J. Madore
et al. in [20] have introduced the generalization of linear connections on matrix
algebras defined above. With the usual definition of covariant derivation acting
on the moving frame:

Dθα = −ωαβ ⊗ θβ (41)

Because the definition of covariant derivative requires that

D(fξ) = df ⊗ ξ + f Dξ, (42)

the covariant derivative of an arbitrary 1-form ξαθ
α is

D (ξαθ
α) = dξα ⊗ θα − ξα ωαβ θβ

The covariant derivative along a vector field X is defined as

DX ξ = iX (Dξ) (43)

and defines a mapping of Ω1(V ) on itself.
If the torsion vanishes, then one finds that

D2 θα = −Ωα
β θ

β (44)

where Ωα
β = Rαβγδ θ

γ ∧ θδ is the curvature 2-form.
The generalization of these formalism for the non-commutative case is quite

obvious. We must replace the linear space of 1-forms which span the tensor and
the exterior algebras by the corresponding right A-module of 1-forms defined
over our matrix algebra Ω1(MnC)). In the basis introduced in the previous
section, θk, k = 1, 2, ...(n2 − 1), we had

dθk = −1

2
Cklmθ

lθm, and df = [θ, f ].

It is easy to define the linear connection with vanishing torsion:

Dθr = −ωrs ⊗ θs , with ωrs = −1

2
Crstθ

t (45)

Introducing the permutation operator σ as

σ(θk ⊗ θm) = θm ⊗ θk,



142 Richard Kerner

we can express the commutativity of the algebra C∞(M4)

D (ξf) = D(f ξ)

by writing
D(ξf) = σ(ξ ⊗ df) + (Dξ) f.

The last condition can be maintained in a more general case as the require-
ment imposed on the connection 1-forms. It follows then that in the case of
matrix algebras considered here, one has

D([f, θk]) = [f,Dθk] = 0, (46)

so that all the coefficients ωklm must be in the center of Mn(C), i.e. they are just
complex numbers, and the torsionless connection defined above becomes unique.

The metric in the space of 1-forms over Mn(C) has been already introduced
as g(θk ⊗ θm) = gkm ∈ C. The fact that ωk(lm) = 0 can be interpreted as the
metricity of this connection. This leads to the unique definition of the corre-
sponding curvature tensor:

Ωk
lmn =

1

8
CklrC

r
mn

These constructions have been used already in [15] and [16], and can serve as the
non-commutative extension of connexion and curvature on the tensor product
of algebras C∞(M4) ⊗Mn(C).

However, the fact that all geometrically important quantities like metric,
connection and curvature coefficients, are forced to belong to the center of the
non-commutative sector make the above generalization quite trivial and therefore
unsatisfactory.

5 Minkowskian space-time as a commutative limit

In this section we shall discuss an important feature of any non-commutative ge-
ometry that contains the algebra of smooth functions on Minkowskian space-time
and is supposed to be Poincaré-invariant at least in the first orders of the defor-
mation parameter. This result has been published in 1998 (M. Dubois-Violette,
J. Madore, R. Kerner, [21]). Similar ideas have been independently developed
earlier by S. Doplicher, K. Fredenhagen and J.E. Roberts (cf. [22]).

The main idea is as follows. Suppose that the non-commutative geometry
that is supposed to describe in an adequate way the quantum version of Gen-
eral Relativity contains in its center the infinite algebra of smooth functions on
Minkowskian space-time. This infinite algebra serves as a representation space
for the infinite-dimensional representation of the Poincaré group, in particular,
the abelian group of translations, in the limit when the gravitational interaction
becomes negligible, which shall correspond to the limit κ → 0, where κ is pro-
portional to the gravitational coupling constant G.
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It seems natural to suppose that the Poincaré invariance remains still valid
before the limit is attained, at least in the linear approximation with respect
to the deformation parameter κ. Then an important question to be answered
appears, namely, what is the dimension of the non-commutative part of the full
algebra before the limit is attained? As it is shown in the reference [21], it must be
infinite-dimensional. In other words, it is impossible to impose the full Poincaré
invariance on a tensor product of C∞(M4) with a finite non-commutative alge-
bra, as in the example with the matrix algebras considered in previous sections.
These examples can be considered only as approximations to the correct theory
of non-commutative space-time and gauge field theories.

Let us consider then a one-parameter family of associative algebras, Aκ,
whose limit at κ = O, denoted by A0, admits a well-defined action of the
Poincaré group on it. When κ→ 0, one should attain as a classical limit certain
algebra, obviously containing C∞ (M4), the algebra of smooth functions on the
Minkowskian manifold:

Aκ → A0 ⊃ C∞(M4) (47)

The one-parameter family of associative algebras, Aκ, can be analyzed with the
help of the deformation theory developed in the well-known article by F. Bayen,
M. Flato, C. Fronsdal and A. Lichnerowicz (cf. [23]). It is supposed that all Aκ

coincide - as vector spaces - with a fixed vector space E. The product of any two
elements f, g in Aκ can be expanded as follows:

(fg)κ = fg + κ c(f, g) + o(κ2) (48)

where fg = (fg)0 is the product in A0. We also assume that there is a common
unit element 1 for all Aκ. The commutators of any two elements f, g in Aκ and
in AO are related via the following equation:

[f, g]κ = [f, g]0 − i κ {f, g}+ o(κ2) (49)

where {f, g} = i (c(f, g) − c(g, f)). The mapping (f, g) → c(f, g) is called a
normalized Hochschild 2-cocycle of A0 with values in A0.

The derivation property of the commutator in Aκ should be maintained,
which means that

[h, (fg)κ]κ = ([h, f ]κ, g)κ + (f, [h, g]κ)κ (50)

Then, in the first order in κ, we get

i

(
[h, c(f, g)] − c([h, f ], g) − c(f, [h, g])

)
= f{h, g} − {h, fg} + {h, f}g (51)

This implies that if h ∈ Z(A0), the center of the algebra A0, then the endo-
morphism δh : δh(f) = {h, f} is a derivation of A0 :

{h, {f, g}} = {{h, f}, g}+ {f, {h, g}} (52)
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The center of the algebra A0, denoted by Z(A), is stable under these derivations,
and therefore, it closes under the bracket { , }. This means that the Jacobi
identity valid in all associative algebras Aκ remains valid, at least up to the
second order in κ, in A0 :

from [f, [g, h]κ]κ + [g, [h, f ]κ]κ + [h, [f, g]κ]κ = 0 it follows

{f, {g, h}κ}κ + {g, {h, f}κ}κ + {h, {f, g}κ}κ = 0 (53)

Summarizung up, we can make the following statement:
The center of A0, Z(A0), is a commutative Poisson algebra with the Poisson

bracket given by
i(c(f, g) − c(g, f))

The linear mapping z → δz maps Z(A0) into the Lie agebra of derivations of
A0 : δz(f) = {z, f}, for z, f ∈ A0

We wish to represent the non-commutative analog of real functions by Hermi-
tian elements of the extended algebra of functions. Therefore, we should impose
the following reality condition :

- all the Aκ are complex *-algebras, whose involutive vector spaces coin-
cide with the unique space E;

- for any f ∈ E, also f∗ ∈ E; moreover, we assume that there exists
a unique hermitian element which is the common unit for all these algebras,
1∗ = 1, such that

(fg)∗κ = (f∗g∗)κ, and (1f)κ = (f1)κ = f

It follows that the normalized co-cycle c(f, g) satisfies natural condition

(c(f, g))∗ = c(g∗, f∗)

Thus, the set ZR(A0 of all Hermitian elements of Z(A0 forms naturally a
real Poisson algebra, and z → δz maps it into the real Lie algebra Der(A0 of all
Hermitian derivations of A0.

Now comes the main point: the necessary realization of the Poincaré invari-
ance on these algebras. The family Aκ represents non-commutative extensions
of the algebra of smooth functions on space-time. Even if these algebras are
not Poincaré-invariant, we wish to recover the Poincaré-invariant physics on the
usual Minkowski space in the limit when κ→ 0. Therefore, we must assume that
the Poincaré group P acts via *-automorphisms on the limit algebra A0 :

(Λ, a) → DΛ,a) ∈ L (A0,A0) (54)

for any element (Λ, a) ∈ P.
By hypothesis, the algebra A0 contains a *-subalgebra identified with the

commutative algebra of smooth functions on Minkowski space, C∞(M4). The
action of P on A0 should induce the usual action of P on C∞(M4) associated
with the corresponding linear transformations in M4.
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We shall now argue that C∞(M4) can not be the whole A0.
Indeed, suppose that A0 = C∞(M4). The, in view of the our previous sate-

ment concerning the Poisson structures, there exists a Poisson bracket on M4.
This Poisson bracket must be non-trivial, since we assumed that the Aκ are all
non-commutative.

On the other hand, we know that there does not exist a non-trivial Poincaré
invariant bracket on M4. Indeed, let (f, g) → {f, g} be such a bracket. Then, in
a given coordinate patch, it can be represented analytically as

{f, g} = Ωµν ∂µf ∂νg (55)

whare Ωµν = {xµ , xν} must be an anti-symmetric tensor field on M4, which is
constant with respect to translations and Lorentz covariant.

However, the rotational invariance already implies that the three-vectors

Ei = Ω0i and Bk = εklmΩ
lm, (i, k, l = 1, 2, 3)

should vanish, which means that Ωµν = 0, and therefore, also {f, g} = 0 for all
f, g ∈ C∞(M4).

It seems unreasonable to suppose that the Poincaré invariance is broken at
the first order in κ, because at this order we expect to recover a spin-2 Poincaré-
invariant theory, coupled to other physical fields. So, if the Poincaré invariance
holds at the first order in κ, it follows that the inclusion C∞(M4) ⊂ A0 must
be a strict one, i.e. the limit κ → 0 of Aκ must contain an extra factor besides
C∞(M4). Therefore, the normalized two-cocycle c( , ) of A0 defined by

(fg)κ = fg + κ c(f, g) + o(κ2) (56)

is supposed to be Poincaré-invariant, i.e. it has the property:

α(Λ,a)

(
c(f, g)) = c(α(Λ,a)(f), α(Λ,a)(g)

)
(57)

which implies the invariance of the κ-bracket:

[f, g]κ = [f, g] − i {f, g}+ o(κ2) (58)

Let us consider now the elements of A0 that belong to C∞(M4) and generate
the commutative algebra of smooth functions on M4 : xµ ∈ C∞(M4). By
definition, we have then

α(Λ,a) x
µ = Λ−1µ

ν (xν − 1 aν) (59)

By choosing the origin, one can identify C∞(M4) with the Hopf algebra of
functions on the group of translations of M4. Since C∞(M4) is a subalgebra of
A0, the algebra AO is a bimodule over C∞(M4). As a left C∞(M4)-module, A0

is isomorphic with the tensor product C∞(M4) ⊗ AI
0 , where AI

0 denotes the
subalgebra of transitionally invariant elements of A0 :

AI
0 =

{
f ∈ A0 | α(1,a)(f) = f for all a

}
(60)
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In fact, A0 is isomorphic with C∞(M4) ⊗ AI
0 as a (C∞(M4),AI

0)-bimodule.
Thus in order to recover the complete algebraic structure of A0, it is sufficient
to describe the right multiplication by elements of C∞(M4) of the elements of
AI

0. The algebra AI
0 is stable under the derivations induced by the generators of

local coordinate variables xµ:

f → ad(xµ)(f) = [xµ, f ]

Therefore, for any f ∈ AI
0 one has

fxµ = xµf − ad(xµ)(f)

or, in the tensorial representation A0 = C∞(M4) ⊗AI
0 :

fxµ = xµ ⊗ f − 1 ⊗ ad(xµ)(f) for any f ∈ AI
0

¿From this we can deduce the right multiplication of C∞(M4) ⊗ AI
0 by the

elements of C∞(M4). Let us denote by Xµ the four commuting derivations of
AI

0 induced by ad(xµ). The algebra AI
0 is invariant under the action of the

diffeomorphisms α(Λ,0).
Let us denote by αIΛ the homomorphism of the Lirentz group into the group

Aut(AI
0) of all the *-automorphisms of AI

0.
Then one can summarize the above discussion of properties of our algebra

by the following presentation of A0 :
We start with a unital *-algebra AI

0 equipped with four commuting anti-
Hermitian derivations Xµ and the action Λ→ αIΛ of the Lorentz group through
the automorphisms of AI

0 :

αIΛ ◦Xµ = Λ−1 µ
ν X

ν ◦ αIΛ (61)

The entire algebra A0 is generated as a unital *-algebra by AI
0 and the four

Hermitian elements xµ which satisfy the relations:

xµxν = xνxµ

and xµf = fxµ +Xµ(f) if f ∈ AI
0 (62)

The Poincaré group acts on A0 as follows:

- for xµ ∈ C∞(M4) :

α(Λ,a) (xµ) = Λ−1µ
ν (xν − aν 1); (63)

- for f ∈ AI
0 :

α(Λ,a)(f) = αIΛ(f). (64)

But we have assumed before that the bracket

{f, g} = i
(
c(f, g) − c(g, f)

)
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does not vanish identically on C∞(M4). This implies that the functions cµν

defined as
cµν = c(xµ, xν)

do not all vanish. On the other hand, these functions being Lorentz covariant
must belong to AI

0, so that we have

αΛ,a)(c
µν) = c̃µν

and one has

αIΛ (cµν) = Λ−1µ
ρ Λ

−1 ν
σ c

ρσ, (65)

so that the homomorphism of the Lorentz group into the group Aut(AI
0 of the

*-automorphisms of AI
0 is never trivial.

This implies in turn that AI
0 cannot be a finite-dimensional algebra (like

e.g. the complex matrix algebra discussed in our previous example), because
on such an algebra all automorphisms are inner, and on the other hand, it is
known that the Lorentz group has no non-trivial, finite dimensional unitary rep-
resentations. Therefore, the extra factor that is present in A0 besides the usual
infinite-dimensional algebra of functions (coordinates) on M4 must be also infi-
nite dimensional.

In view of previous analysis, the algebra A0 is the tensor product C∞(M4)⊗
AI
O, with the Lorentz group acting via automorphisms on AI

0. Since the brackets
{xµ, xν} ∈ AI

0, the algebra AI
0 must contain as a subalgebra an algebra of func-

tions on the union of Lorentz orbits of anti-symmetric 2-tensors. The coordinates
on this algebra viewed as a manifold are just the brackets {xµ, xν}. The orbits
may be labeled by the following two parameters:

α = gµρ gνλ {xµ, xρ}{xν , xλ} and β = εµνρσ {xµ, xν} {xρ, xσ}. (66)

If we want to include the definitions of time reversal and parity, we should assume
that whenever a given orbit (α, β) appears in the algebra, the orbit corresponding
to (α,−β) should appear as well. When one has also {xµ, {xν , xλ}} = 0 for all
values of indeces µ, ν, λ, then AI

0 is equal to the above algebra.
The simplest situation occurs when C∞(M4) belongs to the center of A0. In

this case the cocycle c is antisymmetric (up to a co-boundary) on C∞(M4), and
also on the center Z(A0) itself. Then A0 is a commutative Poisson algebra, and
the family Aκ can be obtained by its geometric quantization.

It is not difficult to give an example of such one-parameter family of algebras,
containing the usual representation of the Poincaré algebra acting on smooth
functions (coordinates) on M4.

[xµ, xν ] = iκMµν

[xλ,Mµν ] = i(gλνLµ − gλµLν)

[xµ, Lν ] = iκMµν
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[Mλρ,Mµν ] = i(gλνMµρ − gρνMµλ + gρµMνλ − gλµMνρ)

[Lλ,Mµν ] = i(gλνLµ − gλµLν)

[Lµ, Lν ] = iκMµν (67)

where gµν denotes the Minkowskian metric diag(−1, 1, 1, 1). It follows from the
above relations that for κ �= 0 the algebras Aκ are generated by the xµ. For
any value of κ there exists an action of the Poincaré group P on Aκ via *-
automorphisms (Λ, a) → α(Λ,a) defined as:

α(Λ,a) x
µ = Λ−1µ

ν (xν−aν 1), α(Λ,a) L
µ = Λ−1µ

ν L
ν , α(Λ,a) I

µν = Λ−1µ
ρ Λ

−1 ν
σ I

ρσ.

The commutation relations between the Iµν and the Lλ are the relations of
the Lie algebra of SO(4, 1) if κ is positive, of SO(3, 2) if κ is negative, and of
the Poincaré algebra if κ = 0. It follows that the Iµν and the Lλ generate the
corresponding enveloping algebras. The differences of the generators xµ−Lµ are
in the center Z(Aκ) of Aκ; therefore the algebra Aκ is the tensor product of the
commutative algebra generated by the (xµ −Lµ) and the two following Casimir
operators:

C2 = κ gµνgρλ I
µρIνλ + 2 gµν L

µLν,

C4 = gρρ
′
(ερλµνL

λIµν)(ερ′λ′µ′ν′Lλ
′
Iµ

′ν′
) (68)

where εµνλρ is the totally anti-seymmetric tensor with ε0123 = 1. Therefore also
A0 is the tensor product of the commutative algebra generated by the (xµ−Lµ)
with the enveloping algebra of the Poincaré Lie algebra generated by the Lµ and
the Iµν .

It must be stressed here that this Poincaré algebra is not the same as the
Poincaré algebra acting on A0 (like on the space-time variables) via the auto-
morphisms α(Λ,a); this can be seen also by the fact that Lµ have the dimension
of a length. This double appearance of the Poincaré algebra may be interpreted
as the necessity to introduce matter besides the space-time itself as soon as we
penetrate in the non-commutative sector of the great algebra containing C∞(M4)
as a factor.

Since our Casimirs C2 and C4 are contained in the center of Aκ, and since
they are translationally invariant, we can impose some fixed values on them,
thus specifying even more precisely the algebras Aκ. Since the element C2 has
the dimension of a length squared, and the element C4 that of a length to the
power four, the most natural choices amount to attribute the value κ2 to the
element C4, while the element C2 can be given the following three particular
values:

i)C2 = κ; ii)C2 = −κ, iii)C2 = 0.

All these choices lead to gµνL
µLν = 0 in AI

0. Remembering the fact that AI
0

has the structure of the enveloping algebra of the Poincaré Lie algebra, the last
condition is an analogue of the zero mass condition in the ususal case.
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With the value of C4 fixed in such a way that the representations found
here are all of “zero mass” and “strictly positive spin” type, which gives the
algebra AI

0 a characteristic two-sheet structure, corresponding to the two possible
helicities, which in turn results from the fact that the Lorentz group is not simply
connected.

As a concluding remark, we would like to stress the fact that in general the
Poincaré covariance of Aκ is not necessary; all we need here is to ensure the
Poincaré covariance of A0 only. Another deformation of the Poincaré algebra,
called “the κ-Poincaré” has been studied in a series of papers published recently
by J. Lukierski and co-authors ([24]).

Their approach is in some sense complementary to the scheme presented
above: instead of considering the action of the exact Poincaré group on the
space-time containing a non-trivial deformation because of the supposed non-
commutative character of the coordinates, one chooses to consider the action of
a deformed Poincaré group, called the κ-Poincaré, on the ordinary space-time.
It seems plausible that in the linear limit both these approaches nearly coincide.

6 Quantum spaces and quantum groups

A more radical deformation of usual behaviour of functions describing the coor-
dinates and their differentials consists in modifying the commutation relations
not only between the coordinates and their differentials, but also between the
coordinates themselves, and between the differentials as well, which would rep-
resent a very profound modification of the space-time structure. Moreover, if we
look for the transformations that would keep these new relations invariant, we
discover that such transformations can not be described by means of ordinary
groups, which therefore need to be generalized. Such new generalizations have
been introduced by V.Drinfeld, L.Faddeev and S.L.Woronowicz, ([25], [26], [27]).
and they are known under the name of “Quantum Groups”.

The litterature on this subject is very abundant; we shall cite the papers
by S.L.Woronowicz [27], as well as the papers of L.C.Biedenharn [28], J.Wess
and B.Zumino [29], L.A.Takhtajan [30], V.G.Kac [31]; the list is far from being
exhaustive, so that we shall limit ourselves to an outline of the main idea illus-
trated by a simple example.

Conformally with the spirit of quantum field theories, the most important
mathematical object to be studied is the algebra of observables, which are usually
functions of few fundamental ones. This approach can be extended to the math-
ematical study of Lie groups: indeed, we can learn almost everything concerning
group’s structure from the algebraic structure of functions (real or complex) de-
fined on it.

Consider a compact manifold G which is also a Lie group; let e denote its
unit element. The algebra A of functions defined on G has a very particular
structure, which is implemented by the following three mappings: i) for each

fεA, there is an element of A⊗A, denoted by ∆f , such that ∆f(x, y) = f(xy);
The mapping ∆ :

A −→ A ⊗ A (69)
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is called the coproduct. ii) There exists a natural mapping from A into C (or

R) defined by

ε : f −→ f(e) ∈ C (70)

which is called the co-unit iii) There exists a natural mapping of A into itself:

(Sf)(x) = f(x−1) (71)

which is called the antipode
It is easy to see that in the case of the algebra of functions defined on a Lie

group the co-product is non-commutative if the Lie group is non-commutative;
however, the multiplication law in the algebra A itself remains commutative as
long as we consider the functions taking their values in C or R. This particu-
lar structure of an associative commutative algebra A with the three operations
defined above, the co-product, the co-unit and the antipode is called the Hopf
algebra. Now, the natural extension that comes to mind is to abandon the pos-
tulate of the commutativity of the product in A; in this case, the structure is
named the Quantum Group. It should be stressed that a quantum group is not
a group, but a general algebra which only in the commutative case behaves as
the algebra of functions defined on a Lie group.

One of the most interesting aspects of this theory is the fact that the quantum
goups arise quite naturally as the transformations of non-commutative geome-
tries known under the name of quantum spaces introduced by Yu.Manin, J.Wess
and B.Zumino, and others. We shall illustrate how a quantum group can be con-
structed on a simple example in two dimensions called the Manin plane ([32]).

Consider two “coordinates” x and y spanning a linear space and satisfying

xy = q yx (72)

with a complex parameter q different from 1. Consider a transformation

x′ = a x+ b y, y′ = c x+ d y. (73)

which preserves the relation xy = q yx, i.e. such that

x′y′ = q y′x′ (74)

We shall suppose that the quantities a, b, c, d commute with the “coordinates”
x, y; the simplest realization of this requirement is achieved by assuming (disre-
garding the nature of the entries of the matrix) that the multiplication of x by
a, b, etc. is tensorial, i.e. when we set by definition

x′ = a⊗ x+ b⊗ y. (75)

Then the conservation of the q-commutation relations between x and y leads to
the following rules for a, b, c and d:

ac = q ca, bd = q db, ad = da+ q cb− (
1

q
)bc (76)
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In order to fix all possible binary relations between the coefiicients a, b, c and d
we need three extra relations, which would define bc, ab and cd. Such relations
can be obtained if we define the “differentials”

ξ = dx, η = dy, ξ2 = 0, η2 = 0. (77)

satisfying twisted p -commutation relations

ξη + (
1

p
)ηξ = 0 (78)

with a new complex parameter p. Assuming that the exterior differentiation
commutes with the transformation matrix and requiring the same relations for
ξ′ and η′, we get

bc = (
q

p
)cb, ab = p ba, cd = p dc. (79)

With these relations the matrix algebra defined above becomes associative and
can be given the structure of a Hopf algebra as follows:

∆

(
a b
c d

)
=

(
a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

)

The antipode S of a quantum matrix should be defined as its inverse. In order to
make such a definition operational, we need a non-commutative generalization
of the determinant of a matrix. Such a “(q, p )-determinant” should be defined
as the combination of parameters appearing in the transformation law for the
“elementary area element”, i.e. the exterior product of the differentials ξ and η:

ξ′η′ = Dqξη (80)

which yields immediately

Dq = ad− pbc = da− (
1

q
)bc (81)

The determinant Dq commutes with a and d, but has non-trivial commutation
relations with the off-diagonal elements a and b (in what follows, we shall omit
the subscript q for the sake of simplicity) :

Db = (
p

q
)bD, Dc = (

q

p
)cD. (82)

It should also possess an inverse D−1, which in fact is a new element extending
the algebra, and satisfying

D−1D = 1 = DD−1 (83)
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Applying these identities to the commutation relations verified by D, one finds
easily that D−1 commutes with a and b, and satisfies

bD−1 = (
p

q
)D−1b, cD−1 = (

q

p
)D−1c (84)

It is easy to see that

∆(D) = D ⊗D, ∆(D)∆(D−1) = ∆(1) = 1 ⊗ 1 (85)

and

∆(D−1) = D−1 ⊗D−1 (86)

The antipode of any matrix can be determined now as follows:

S

(
a b
c d

)
= D−1

(
d (−1

q )b

−qc a

)
=

(
d ( 1

p)b

−p a

)
D−1 (87)

Also

S(D) = D−1, S(D−1) = S(D) (88)

but S2 �= 1. The inverse of the antipode mapping can be also defined as

S

(
a b
c d

)
= D

(
a pq

( 1
pq )c d

)
(89)

The algebra generated by the matrices defined above, whose entries a, b, c
and d satisfy the (q, p)-commutation relations is a Hopf algebra; it is denoted by
GLp,q(2,C).
A differential calculus on such algebras has been developed by S.L.Woronowicz;
the notion of covariant differentiation, if it can be introduced properly, may lead
to new and rich extensions of the ideas of connections, curvatures and gauge
fields. Here we shall give an example of the realization of covariant derivation
and the curvature 2-form on the quantum plane introduced above. These results
belong to M. Dubois-Violette et al., published in ([33]).

The algebra of forms on the quantum plane is generated by four elements,
x, y, ξ = dx and η = dy, with the following commutation relations:

xy = q yx,

xξ = q2ξx, xη = q ηx+ (q2 − 1) ξy, yξ = q ξy, yη = q2 ηy,

ξ2 = 0, η2 = 0, ηξ + qξη = 0

where q is supposed not to be a root of unity. In (still hypothetical !) future
physcical applications the value of the parameter q is supposed to be very close to
1, and in the linear approximation can be written as 1+κ. The above conditions
are of course compatible with the definitions ξ = dx, η = dy and with the Leibniz
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rule, i.e. if we apply the operation d to the first constitutive identity xy = q yx, we
obtain a relation which is a direct consequence of the four constitutive relations
between x, y and their differentials ξ, η , and so forth.

All the relations between the variables x, y and their differentials ξ, η can
be written in a more uniform way using a matrix notation which introduces
the tensorial product of linear spaces spanned by both x, y and ξ, η variables.
Denoting x and y by xi and ξ and η by ξk, with i, k = 1, 2, we can write

xixj − q−1R̂ijkl x
kxl,

xiξj − q R̂ijkl ξ
kxl,

ξiξj + q R̂ijkl ξ
kξl. (90)

The tensor product of two 2-dimensional spaces is 4-dimensional, but the indices
that are grouped two by two can be re-labeled with their values ranging from 1
to 4, and the R-matrix can be written as an ordinary 4 × 4 matrix:

R̂ =



q 0 0 0
0 (q − q−1) 1 0
0 1 0 0
0 0 0 q


 (91)

If the SLq(2,C) matrix (corresponding to the case p = q−1 in the more general
notation GLq(p, q)(2,C) introduced above) is written, with the same indices
k, l = 1, 2 as

aik =

(
a b
c d

)
then the invariance of the q-commutation relations with respect to the simulta-
neous transformation of the linear spaces x, y and ξ, η by a matrix belonging to
the quantum group SLq(2,C) amounts to the following relation:

R̂ijkl a
k
m a

l
n = aika

j
l R̂

kl
mn (92)

If we extend trivially the action of the differential d onto the quantum group
SLq(2,C) itself by requiring all the coefficients aik to be constant,

d aik = 0,

The coaction of SLq(2,C) on the xi and the ξk can be defined then as follows:

x̃i = aik ⊗ xk, ξ̃j = ajm ⊗ ξm. (93)

It can be found without much pain that the new variables x̃i and ξ̃k satisfy the
same twisted commutation relations as formerly xi and ξk.

As in the case of the matrix model of non-commutative geometry, one can
introduce a canonical 1-form by defining

θ = x η − q y ξ, satisfying θ2 = 0.
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and is invariant under the coaction of SLq(2,C) with θ̃ = 1 ⊗ θ and has the
following commutation relations with the variables xk, ξm :

xk θ = q θxk; ξm θ = −q3 θ ξm (94)

Up to a complex multiplicative constant this is the unique element of Ω1 (the
space of q-one forms) verifying the above properties.

To define covariant derivation, we must introduce first the permutation op-
erator σ mapping the tensor product Ω1⊗AΩ1 into itself. As a matter of fact,
the operator σ turns out to be just the inverse of the matrix q R̃ijkl.We can write
it down using the explicit indices i, j, .. as follows:

σ (ξ ⊗ ξ) = q−2 ξ ⊗ ξ, σ (ξ ⊗ η) = q−1 η ⊗ ξ,

σ (η ⊗ ξ) = q−1 ξ ⊗ η − (1 − q−2) η ⊗ ξ, σ (η ⊗ η) = q−2 η ⊗ η (95)

as well as

σ (ξ ⊗ θ) = q−3 θ ⊗ ξ, σ (θ ⊗ ξ) = q ξ ⊗ θ − (1 − q−1) θ ⊗ ξ,

σ (η ⊗ θ) = q−3 θη, σ (θ ⊗ η) = q η ⊗ θ − (1 − q−2) θ ⊗ η. (96)

and also
σ (θ ⊗ θ) = q−2θ ⊗ θ

If we suppose that q2 �= −1, then the exterior algebra is obtained by dividing
the tensor algebra over Ω1 by the ideal generated by the three eigenvectors :

ξ ⊗ ξ, η ⊗ η and η ⊗ ξ + q ξ ⊗ η,
corresponding to the eigenvalue q−2.

The symmetric algebra of forms is obtained by dividing the tensor algebra
over Ω1 by the ideal generated by the eigenvector ξ ⊗ η − q η ⊗ ξ corresponding
to the eigenvalue −1.

There is a unique one-parameter family of covariant derivatives compatible
with the algebraic structure of the algebra of forms defined above. It is given by

D ξk = l−4 xk θ ⊗ θ (97)

where the parameter l must have the dimension of a length. From the invariance
of θ it follows that D is invariant under the coaction of SLq(2,C). The analog
of torsion vanishes identically.

Finally, the analog of the curvature tensor can be defined here as

D2 ξk = Ωk ⊗ θ = −Ωk
j ⊗ ξl (98)

with the curvature 2-forms given by the following matrix:

Ωi
j = l−4 (1 + q−2)(1 + q−4)

(
q2 xy −q x2

q2 y2 −xy

)
ξ η (99)

It vanishes for the particular values of q, namely, when q = ±i or q2 = ±i,
but is different from zero when q = 1. The Bianchi identity is trivially satisfied.

No metric structure compatible with this structure can be introduced except
for the trivial case when q = 1.
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7 Conclusion

We tried to present here a few versions of non-commutative generalizations of
differential geometry which are believed to serve - hopefully in some foreseable
future - as new mathematical tools that will help us to describe the effects
of quantum gravity. Frankly speaking, in spite of beauty and sophistication of
certain models, it is hard to share this belief.

It does not mean that our efforts should be reduced or stopped at once. “Ars
longa, vita brevis” , and there is still a lot of time ahead, especially as compared
to the cosmological scale. The overall impression might be pessimistic, but there
is always plenty of things to do.

For example, if we look at the diagram of Sect.1, we can note that besides
the “Relativistic Quantum Field Theory” there is another unexplored corner, the
“Non-Relativistic Quantum Gravity”. Maybe we should pay some more attention
to this direction, too ? Or at least, if such a theory can not be formulated, try to
give valuable reasons why this is the unique combination of limits of fundamental
constants that can not be realized as a coherent theory ?
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Abstract. I give a review of the conceptual issues that arise in theories of quantum
cosmology. I start by emphasising some features of ordinary quantum theory that also
play a crucial role in understanding quantum cosmology. I then give motivations why
spacetime cannot be treated classically at the most fundamental level. Two important
issues in quantum cosmology – the problem of time and the role of boundary condi-
tions – are discussed at some length. Finally, I discuss how classical spacetime can be
recovered as an approximate notion. This involves the application of a semiclassical
approximation and the process of decoherence. The latter is applied to both global
degrees of freedom and primordial fluctuations in an inflationary Universe.

1 Introduction

As the title of this school indicates, a consistent quantum theory of gravity
is eventually needed to solve the fundamental cosmological questions. These
concern in particular the role of initial conditions and a deeper understanding of
processes such as inflation. The presence of the singularity theorems in general
relativity prevents the formulation of viable initial conditions in the classical
theory. Moreover, the inflationary scenario can be successfully implemented only
if the cosmological no-hair conjecture is imposed – a conjecture which heavily
relies on assumptions about the physics at sub-Planckian scales.

It is generally assumed that a quantum theory of gravity can cure these
problems. This is not a logical necessity, though, since there might exist classical
theories which could achieve the same. As will be discussed in my contribution,
however, one can put forward many arguments in favour of the quantisation of
gravity, which is why classical alternatives will not be considered here.

Although a final quantum theory of gravity is still elusive, there exist concrete
approaches which are mature enough to discuss their impact on cosmology. Here
I shall focus on conceptual, rather than technical, issues that one might expect
to play a role in any quantum theory of the gravitational field. In fact, most of
the existing approaches leave the basic structures of quantum theory, such as its
linearity, untouched.

Two aspects of quantum cosmology must be distinguished. The first is con-
cerned with the application of quantum theory to the Universe as a whole and
is independent of any particular interaction. This raises such issues as the inter-
pretation of quantum theory for closed systems, where no external measuring
agency can be assumed to exist. In particular, it must be clarified how and to
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what extent classical properties emerge. The second aspect deals with the pe-
culiarities that enter through quantum aspects of the gravitational interaction.
Since gravity is the dominant interaction on the largest scales, this is an impor-
tant issue in cosmology. Both aspects will be discussed in my contribution.

Since many features in quantum cosmology arise from the application of
standard quantum theory to the Universe as a whole, I shall start in the next
section with a dicussion of the lessons that can be learnt from ordinary quantum
theory. In particular, the central issue of the quantum-to-classical transition will
be discussed at some length. Section 3 is then devoted to full quantum cosmology:
I start with giving precise arguments why one must expect that the gravitational
field is of a quantum nature at the most fundamental level. I then discuss the
problem of time and related issues such as the Hilbert-space problem. I also
devote some space to the central question of how to impose boundary conditions
properly in quantum cosmology. The last section will then be concerned with
the emergence of a classical Universe from quantum cosmology. I demonstrate
how an approximate notion of a time parameter can be recovered from “timeless”
quantum cosmology through some semiclassical approximation. I then discuss at
length the emergence of a classical spacetime by decoherence. This is important
for both the consistency of the inflationary scenario as well as for the classicality
of primordial fluctuations which can serve as seeds for galaxy formation and
which can be observed in the anisotropy spectrum of the cosmic microwave
background.

2 Lessons from quantum theory

2.1 Superposition principle and “measurements”

The superposition principle lies at the heart of quantum theory. From a con-
ceptual point of view, it is appropriate to separate it into a kinematical and a
dynamical version (Giulini et al. 1996):

• Kinematical version: If Ψ1 and Ψ2 physical states, then αΨ1 + βΨ2, where α
and β are complex numbers, is again a physical state.

• Dynamical version: If Ψ1(t) and Ψ2(t) are solutions of the Schrödinger equa-
tion, then αΨ1(t) + βΨ2(t) is again a solution of the Schrödinger equation.

These features give rise to the nonseparability of quantum theory. If interactions
between systems are present, the emergence of entangled states is unavoidable.
As Schrödinger (1935) put it:

I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines
of thought. By the interaction the two representatives (or ψ-functions)
have become entangled. . . . Another way of expressing the peculiar sit-
uation is: the best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts, even though they
may be entirely separated . . .
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Because of the superposition principle, quantum states which mimic classical
states (for example, by being localised), form only a tiny subset of all possible
states. Up to now, no violation of the superposition principle has been observed
in quantum-mechanical experiments, and the only question is why we observe
classical states at all. After all, one would expect the superposition principle to
have unrestricted validity, since also macroscopic objects are composed of atoms.

The power of the superposition principle was already noted by von Neumann
in 1932 when he tried to describe the measurement process consistently in quan-
tum terms. He considers an interaction between a system and a (macroscopic)
apparatus (cf. Giulini et al. 1996). Let the states of the measured system which
are discriminated by the apparatus be denoted by |n〉, then an appropriate in-
teraction Hamiltonian has the form

Hint =
∑
n

|n〉〈n| ⊗ Ân . (1)

The operators Ân, acting on the states of the apparatus, are rather arbitrary, but
must of course depend on the “quantum number” n. Note that the measured
“observable” is dynamically defined by the system-apparatus interaction and
there is no reason to introduce it axiomatically (or as an additional concept). If
the measured system is initially in the state |n〉 and the device in some initial
state |Φ0〉, the evolution according to the Schrödinger equation with Hamiltonian
(1) reads

|n〉|Φ0〉 t−→ exp (−iHintt) |n〉|Φ0〉 = |n〉 exp
(
−iÂnt

)
|Φ0〉

=: |n〉|Φn(t)〉 . (2)

The resulting apparatus states |Φn(t)〉 are usually called “pointer positions”. An
analogy to (2) can also be written down in classical physics. The essential new
quantum features come into play when we consider a superposition of different
eigenstates (of the measured “observable”) as initial state. The linearity of time
evolution immediately leads to(∑

n

cn|n〉
)
|Φ0〉 t−→

∑
n

cn|n〉|Φn(t)〉 . (3)

This state does not, however, correspond to a definite measurement result –
it contains a “weird” superposition of macroscopic pointer positions! This mo-
tivated von Neumann to introduce a “collapse” of the wave function, because
he saw no other possibility to adapt the formalism to experience. There have
been only rather recently attempts to give a concrete dynamical formulation of
this collapse (see, e.g., Chap. 8 in Giulini et al. (1996)). However, none of these
collapse models has yet been experimentally confirmed. In the following I shall
review a concept that enables one to reconcile quantum theory with experience
without introducing an explicit collapse; strangely enough, it is the superposition
principle itself that leads to classical properties.
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2.2 Decoherence: Concepts, examples, experiments

The crucial observation is that macroscopic objects cannot be considered as being
isolated – they are unavoidably coupled to ubiquitous degrees of freedom of their
einvironment, leading to quantum entanglement. As will be briefly discussed in
the course of this subsection, this gives rise to classical properties for such objects
– a process known as decoherence. This was first discussed by Zeh in the seventies
and later elaborated by many authors; a comprehensive treatment is given by
Giulini et al. (1996), other reviews include Zurek (1991), Kiefer and Joos (1999),
see also the contributions to the volume Blanchard et al. (1999).

Denoting the environmental states with |En〉, the interaction with system and
apparatus yields instead of (3) a superposition of the type(∑

n

cn|n〉
)
|Φ0〉|E0〉 t−→

∑
n

cn|n〉|Φn〉|En〉 . (4)

This is again a macroscopic superposition, involving a tremendous number of
degrees of freedom. The crucial point now is, however, that most of the environ-
mental degrees of freedom are not amenable to observation. If we ask what can
be seen when observing only system and apparatus, we need – according to the
quantum rules – to calculate the reduced density matrix ρ that is obtained from
(4) upon tracing out the environmental degrees of freedom.

If the environmental states are approximately orthogonal (which is the generic
case),

〈Em|En〉 ≈ δmn , (5)

the density matrix becomes approximately diagonal in the “pointer basis”,

ρS ≈
∑
n

|cn|2|n〉〈n| ⊗ |Φn〉〈Φn| . (6)

Thus, the result of this interaction is a density matrix which seems to describe
an ensemble of different outcomes n with the respective probabilities. One must
be careful in analysing its interpretation, however: This density matrix only cor-
responds to an apparent ensemble, not a genuine ensemble of quantum states.
What can safely be stated is the fact, that interference terms (non-diagonal el-
ements) are absent locally, although they are still present in the total system,
see (4). The coherence present in the initial system state in (3) can no longer
be observed; it is delocalised into the larger system. As is well known, any in-
terpretation of a superposition as an ensemble of components can be disproved
experimentally by creating interference effects. The same is true for the situa-
tion described in (3). For example, the evolution could in principle be reversed.
Needless to say that such a reversal is experimentally extremely difficult, but
the interpretation and consistency of a physical theory must not depend on our
present technical abilities. Nevertheless, one often finds explicit or implicit state-
ments to the effect that the above processes are equivalent to the collapse of the
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wave function (or even solve the measurement problem). Such statements are
certainly unfounded. What can safely be said, is that coherence between the
subspaces of the Hilbert space spanned by |n〉 can no longer be observed in the
system considered, if the process described by (3) is practically irreversible.

The essential implications are twofold: First, processes of the kind (3) do
happen frequently and unavoidably for all macroscopic objects. Second, these
processes are irreversible in practically all realistic situtations. In a normal mea-
surement process, the interaction and the state of the apparatus are controllable
to some extent (for example, the initial state of the apparatus is known to the ex-
perimenter). In the case of decoherence, typically the initial state is not known
in detail (a standard example is interaction with thermal radiation), but the
consequences for the local density matrix are the same: If the environment is
described by an ensemble, each member of this ensemble can act in the way
described above.

A complete treatment of realistic cases has to include the Hamiltonian gov-
erning the evolution of the system itself (as well as that of the environment).
The exact dynamics of a subsystem is hardly manageable (formally it is given by
a complicated integro-differential equation, see Chap. 7 of Giulini et al. 1996).
Nevertheless, we can find important approximate solutions in some simplifying
cases. One example is concerned with localisation through scattering processes
and will be briefly discussed in the following. My treatment will closely follow
Kiefer and Joos (1999).

Why do macroscopic objects always appear localised in space? Coherence
between macroscopically different positions is destroyed very rapidly because of
the strong influence of scattering processes. The formal description may proceed
as follows. Let |x〉 be the position eigenstate of a macroscopic object, and |χ〉 the
state of the incoming particle. Following the von Neumann scheme, the scattering
of such particles off an object located at position x may be written as

|x〉|χ〉 t−→ |x〉|χx〉 = |x〉Sx|χ〉 , (7)

where the scattered state may conveniently be calculated by means of an ap-
propriate S-matrix. For the more general initial state of a wave packet we have
then ∫

d3x ϕ(x)|x〉|χ〉 t−→
∫

d3x ϕ(x)|x〉Sx|χ〉 , (8)

and the reduced density matrix describing our object changes into

ρ(x, x′) = ϕ(x)ϕ∗(x′)
〈
χ|S†

x′Sx|χ
〉
. (9)

These steps correspond to the general steps discussed above. Of course, a single
scattering process will usually not resolve a small distance, so in most cases the
matrix element on the right-hand side of (9) will be close to unity. But if we
add the contributions of many scattering processes, an exponential damping of
spatial coherence results:

ρ(x, x′, t) = ρ(x, x′, 0) exp
{
−Λt(x− x′)2

}
. (10)
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The strength of this effect is described by a single parameter Λ which may be
called the “localisation rate” and is given by

Λ =
k2Nvσeff

V
. (11)

Here, k is the wave number of the incoming particles, Nv/V the flux, and σeff
is of the order of the total cross section (for details see Joos and Zeh 1985 or
Sect. 3.2.1 and Appendix 1 in Giulini et al. 1996). Some values of Λ are given in
the Table.

Table 1. Localisation rate Λ in cm−2s−1 for three sizes of “dust particles” and various
types of scattering processes (from Joos and Zeh 1985). This quantity measures how
fast interference between different positions disappears as a function of distance in the
course of time, see (10).

a = 10−3cm a = 10−5cm a = 10−6cm

dust particle dust particle large molecule

Cosmic background radiation 106 10−6 10−12

300 K photons 1019 1012 106

Sunlight (on earth) 1021 1017 1013

Air molecules 1036 1032 1030

Laboratory vacuum 1023 1019 1017

(103 particles/cm3)

Most of the numbers in the table are quite large, showing the extremely
strong coupling of macroscopic objects, such as dust particles, to their natural
environment. Even in intergalactic space, the 3K background radiation cannot
be neglected.

In a general treatment one must combine the decohering influence of scat-
tering processes with the internal dynamics of the system. This leads to master
equations for the reduced density matrix, which can be solved explicitly in sim-
ple cases. Let me mention the example where the internal dynamics is given by
the free Hamiltonian and consider the coherence length, i.e. the non-diagonal
part of the density matrix. According to the Schrödinger equation, a free wave
packet would spread, thereby increasing its size and extending its coherence
properties over a larger region of space. Decoherence is expected to counteract
this behaviour and reduce the coherence length. This can be seen in the solu-
tion shown in Fig. 1, where the time dependence of the coherence length (the
width of the density matrix in the off-diagonal direction) is plotted for a truly
free particle (obeying a Schrödinger equation) and also for increasing strength of
decoherence. For large times the spreading of the wave packet no longer occurs
and the coherence length always decreases proportional to 1/

√
Λt. More details

and more complicated examples can be found in Giulini et al. (1996).
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Fig. 1. Time dependence of coherence length. It is a measure of the spatial extension
over which the object can show interference effects. Except for zero coupling (Λ = 0),
the coherence length always decreases for large times. From Giulini et al. (1996).

Not only the centre-of-mass position of dust particles becomes “classical” via

decoherence. The spatial structure of molecules represents another most impor-

tant example. Consider a simple model of a chiral molecule (Fig. 2).

1

23

4
1

2 3

4

Fig. 2. Typical structure of an optically active, chiral molecule. Both versions are
mirror-images of each other and are not connected by a proper rotation, if the four
elements are different.
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Right- and left-handed versions both have a rather well-defined spatial struc-
ture, whereas the ground state is - for symmetry reasons - a superposition of both
chiral states. These chiral configurations are usually separated by a tunneling
barrier (compare Fig. 3) which is so high that under normal circumstances tun-
neling is very improbable, as was already shown by Hund in 1929. But this
alone does not explain why chiral molecules are never found in energy eigen-
states! Only the interaction with the environment can lead to the localisation
and the emergence of a spatial structure. We shall encounter a similar case of
“symmetry breaking” in the case of quantum cosmology, see Sect. 4.2 below.

V(z)

|1>

|2>

Fig. 3. Effective potential for the inversion coordinate in a model for a chiral molecule
and the two lowest-lying eigenstates. The ground state is symmetrically distributed
over the two wells. Only linear combinations of the two lowest-lying states are localised
and correspond to a classical configuration.

I want to emphasise that decoherence should not be confused with thermal-
isation, although they sometimes occur together. In general, decoherence and
relaxation have drastically different timescales – for a typical macroscopic situa-
tion decoherence is faster by forty orders of magnitude. This short decoherence
timescale leads to the impression of discontinuities, e.g. “quantum jumps”, al-
though the underlying dynamics, the Schrödinger equation, is continuous. There-
fore, to come up with a precise experimental test of decoherence, one must
spend considerable effort to bring the decoherence timescale into a regime where
it is comparable with other timescales of the system. This was achieved by a
quantum-optical experiment that was performed in Paris in 1996, see Haroche
(1998) for a review.
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What is done in this experiment? The role of the system is played by a ru-
bidium atom and its states |n〉 are two Rydberg states |+〉 and |−〉. This atom is
sent into a high-Q cavity and brought into interaction with an electromagnetic
field. This field plays the role of the “apparatus” and its pointer states |Φn〉 are
coherent states |α+〉 and |α−〉 which are correlated with the system states |+〉
and |−〉, respectively. The atom is brought into a superposition of |+〉 and |−〉
which it imparts on the coherent states of the electromagnetic field; the latter
is then in a superposition of |α+〉 and |α−〉, which resembles a Schrödinger-cat
state. The role of the environment is played by mirror defects and the corre-
sponding environmental states are correlated with the respective components
of the field superposition. One would thus expect that decoherence turns this
superposition locally into a mixture. The decoherence time is calculated to be
tD ≈ tR/n̄, where tR is the relaxation time (the field-energy decay time) and n̄
is the average photon number in the cavity. In the experiment tR is about 160
microseconds, and n̄ ≈ 3.3. These values enable one to monitor the process of
decoherence as a process in time.

The decay of field coherence is measured by sending a second atom with
different delay times into the cavity, playing the role of a “quantum mouse”;
interference fringes are observed through two-atom correlation signals. The ex-
perimental results are found to be in complete agreement with the theoretical
prediction. If a value of n̄ ≈ 10 is chosen, decoherence is already so rapid that no
coherence can be seen. This makes it obvious why decoherence for macroscopic
objects happens “instantaneously” for all practical purposes.

2.3 On the interpretation of quantum theory1

It would have been possible to study the emergence of classical properties by
decoherence already in the early days of quantum mechanics and, in fact, the
contributions of Landau, Mott, and Heisenberg at the end of the twenties can be
interpreted as a first step in this direction. Why did one not go further at that
time? One major reason was certainly the advent of the “Copenhagen doctrine”
that was sufficient to apply the formalism of quantum theory on a pragmatic
level. In addition, the imagination that objects can be isolated from their en-
vironment was so deeply rooted since the time of Galileo, that the quantitative
aspect of decoherence was largely underestimated. This quantitative aspect was
only borne out by detailed calculations, some of which I have reviewed above.
Moreover, direct experimental verification was only possible quite recently.

What are the achievements of the decoherence mechanism? Decoherence can
certainly explain why and how within quantum theory certain objects (including
fields) appear classical to “local” observers. It can, of course, not explain why
there are such local observers at all. The classical properties are defined by the
pointer basis for the object, which is distinguished by the interaction with the
environment and which is sufficiently stable in time. It is important to emphasise
that classical properties are not an a priori attribute of objects, but only come
into being through the interaction with the environment.
1 This is adapted from Sect. 4 of Kiefer and Joos (1999).
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Because decoherence acts, for macroscopic systems, on an extremely short
time scale, it appears to act discontinuously, although in reality decoherence
is a smooth process. This is why “events”, “particles”, or “quantum jumps”
are observed. Only in the special arrangement of experiments, where systems
are used that lie at the border between microscopic and macroscopic, can this
smooth nature of decoherence be observed.

Since decoherence studies only employ the standard formalism of quantum
theory, all components characterising macroscopically different situations are
still present in the total quantum state which includes system and environment,
although they cannot be observed locally. Whether there is a real dynamical
“collapse” of the total state into one definite component or not (which would
lead to an Everett interpretation) is at present an undecided question. Since this
may not experimentally be decided in the near future, it has been declared a
“matter of taste” (Zeh 1997).

The most important feature of decoherence besides its ubiquity is its ir-
reversible nature. Due to the interaction with the environment, the quantum
mechanical entanglement increases with time. Therefore, the local entropy for
subsystems increases, too, since information residing in correlations is locally
unobservable. A natural prerequisite for any such irreversible behaviour, most
pronounced in the Second Law of thermodynamics, is a special initial condition
of very low entropy. Penrose has demonstrated convincingly that this is due to
the extremely special nature of the big bang. Can this peculiarity be explained
in any satisfactory way? Convincing arguments have been put forward that this
can only be achieved within a quantum theory of gravity (Zeh 1999). This leads
directly into the realm of quantum cosmology which is the topic of the following
sections.

3 Quantum cosmology

3.1 Why spacetime cannot be classical

Quantum cosmology is the application of quantum theory to the Universe as
a whole. Is such a theory possible or even – as I want to argue here – needed
for consistency? In the first section I have stressed the importance of the super-
position principle and the ensuing quantum entanglement with environmental
degrees of freedom. Since the environment is in general also coupled to another
environment, this leads ultimately to the whole Universe as the only closed
quantum system in the strict sense. Therefore one must take quantum cosmol-
ogy seriously. Since gravity is the dominant interaction on the largest scales, one
faces the problem of quantising the gravitational field. In the following I shall
list some arguments that can be put forward in support of such a quantisation,
cf. Kiefer (1999):

• Singularity theorems of general relativity: Under very general conditions, the
occurrence of a singularity, and therefore the breakdown of the theory, is
unavoidable. A more fundamental theory is therefore needed to overcome
these shortcomings, and the general expectation is that this fundamental
theory is a quantum theory of gravity.
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• Initial conditions in cosmology: This is related to the singularity theorems,
since they predict the existence of a “big bang” where the known laws of
physics break down. To fully understand the evolution of our Universe, its
initial state must be amenable to a physical description.

• Unification: Apart from general relativity, all known fundamental theories
are quantum theories. It would thus seem awkward if gravity, which couples
to all other fields, should remain the only classical entity in a fundamental
description. Moreover, it seems that classical fields cannot be coupled to
quantum fields without leading to inconsistencies (Bohr-Rosenfeld type of
analysis).

• Gravity as a regulator: Many models indicate that the consistent inclusion
of gravity in a quantum framework automatically eliminates the divergences
that plague ordinary quantum field theory.

• Problem of time: In ordinary quantum theory, the presence of an external
time parameter t is crucial for the interpretation of the theory: “Measure-
ments” take place at a certain time, matrix elements are evaluated at fixed
times, and the norm of the wave function is conserved in time. In general rel-
ativity, on the other hand, time as part of spacetime is a dynamical quantity.
Both concepts of time must therefore be modified at a fundamental level.
This will be discussed in some detail in the next subsection.

The task of quantising gravity has not yet been accomplished, but approaches
exist within which sensible questions can be asked. Two approaches are at the
centre of current research: Superstring theory (or M-theory) and canonical quan-
tum gravity. Superstring theory is much more ambitious and aims at a unifica-
tion of all interactions within a single quantum framework (a recent overview is
Sen 1998). Canonical quantum gravity, on the other hand, attempts to construct
a consistent, non-perturbative, quantum theory of the gravitational field on its
own. This is done through the application of standard quantisation rules to the
general theory of relativity.

The fundamental length scales that are connected with these theories are the
Planck length, lp =

√
G~/c3, or the string length, ls. It is generally assumed

that the string length is somewhat larger than the Planck length. Although not
fully established in quantitative detail, canonical quantum gravity should follow
from superstring theory for scales l � ls > lp. One argument for this derives
directly from the kinematical nonlocality of quantum theory: Quantum effects
are not a priori restricted to certain scales. For example, the rather large mass of
a dust grain cannot by itself be used as an argument for classicality. Rather, the
process of decoherence through the environment can explain why quantum effects
are negligible for this object, see the discussion in Sect. 2.2, in particular the
quantitative aspects as they manifest themselves in the Table. Analogously, the
smallness of lp or ls cannot by itself be used to argue that quantum-gravitational
effects are small. Rather, this should be an emergent fact to be justified by
decoherence (see Sect. 4). Since for scales larger than lp or ls general relativity is
an excellent approximation, it must be clear that the canonical quantum theory
must be an excellent approximation, too. The canonical theory might or might
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not exist on a full, non-perturbative level, but it should definitely exist as an
effective theory on large scales. It seems therefore sufficient to base the following
discussion on canonical quantum gravity, although I want to emphasise that the
same conceptual issues arise in superstring theory.

Depending on the choice of the canonical variables, the canonical theory can
be subdivided into the following approaches:

• Quantum geometrodynamics: This is the traditional approach that uses the
three-dimensional metric as its configuration variable.

• Quantum connection dynamics: The configuration variable is a non-abelian
connection that has many similarities to gauge theories.

• Quantum loop dynamics: The configuration variable is the trace of a holon-
omy with respect to a loop, analogous to a Wilson loop.

There exists a connection between the last two approaches, whereas their connec-
tion to the first approach is less clear. For the above reason one should, however,
expect that a relation between all approaches exists at least on a semiclassi-
cal level. Here, I shall restrict myself to quantum geometrodynamics, since this
seems to be the most appropriate language for a discussion of the conceptual
issues. However, most of this discussion should find its pendant in the other ap-
proaches, too. A thorough discussion of these other approaches can be found in
many contributions to this volume, see also Ashtekar (1999).

3.2 Problem of time

“Quantisation” is a set of heuristic recipes which allows one to guess the structure
of the quantum theory from the underlying classical theory. In the canonical
approach, the first step is to identify the canonical variables, the configuration
and momentum variables of the classical theory. Their Poisson brackets are then
translated into quantum operators. As a well-known theorem by Groenewald
and van Hove states, such a translation is not possible for most of the other
variables.

Details of the canonical formalism for general relativity can be found in Isham
(1992), Kuchař (1992), and the references therein, and I shall give here only a
brief introduction. For the definition of the canonical momenta, a time coordi-
nate has to be distinguished. This spoils the explicit four-dimensional covariance
of general relativity – the theory is reformulated to give a formulation for the
dynamics of three-dimensional hypersurfaces. It is then not surprising that the
configuration variable is the three-dimensional metric, hab(x), on such hypersur-
faces. The three-metric has six independent degrees of freedom. The remaining
four components of the spacetime metric play the role of non-dynamical La-
grange multipliers called lapse function, N⊥(x), and shift vector, Na(x) – they
parametrise, respectively, the way in which consecutive hypersurfaces are chosen
and how the coordinates are selected on a hypersurface. The momenta canon-
ically conjugated to the three-metric, pab(x), form a tensor which is linearly
related to the second fundamental form associated with a hypersurface – speci-
fying the way in which the hypersurface is embedded into the fourth dimension.
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In the quantum theory, the canonical variables are formally turned into operators
obeying the commutation relations

[ĥab(x), p̂
ab(y)] = i~δc(aδ

d
b)δ(x,y) . (12)

In a (formal) functional Schrödinger representation, the canonical operators act
on wave functionals Ψ depending on the three-metric,

ĥab(x)Ψ [hab(x)] = hab(x)Ψ [hab(x)] (13)

p̂cd(x)Ψ [hab(x)] =
~

i

δ

δhcd(x)
Ψ [hab(x)] . (14)

A central feature of canonical gravity is the existence of constraints. Because of
the four-dimensional diffeomorphism invariance of general relativity, these are
four constraints per space point, one Hamiltonian constraint,

Ĥ⊥Ψ = 0 , (15)

and three diffeomorphism constraints,

ĤaΨ = 0 . (16)

The total Hamiltonian is obtained by integration2,

Ĥ =

∫
d3x (N⊥Ĥ⊥ +NaĤa), (17)

where N⊥ and Na denote again lapse function and shift vector, respectively.
The constraints then enforce that the wave functional be annihilated by the
total Hamiltonian,

ĤΨ = 0 . (18)

TheWheeler-DeWitt equation (18) is the central equation of canonical quantum
gravity. This also holds for quantum connection dynamics and quantum loop
dynamics, although the configuration variables are different.

The Wheeler-DeWitt equation (18) possesses the remarkable property that
it does not depend on any external time parameter – the t of the time-dependent
Schrödinger equation has totally disappeared, and (18) looks like a stationary
zero-energy Schrödinger equation. How can this be understood? In classical
canonical gravity, a spacetime can be represented as a “trajectory” in config-
uration space – the space of all three-metrics. Although time coordinates have
no intrinsic meaning in classical general relativity either, they can nevertheless
be used to parametrise this trajectory in an essentially arbitrary way. Since no
trajectories exist anymore in quantum theory, no spacetime exists at the most

2 In the following I shall restrict myself to closed compact spaces; otherwise, the Hamil-
tonian has to be augmented by surface terms such as the ADM energy.
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fundamental, and therefore also no time coordinates to parametrise any trajec-
tory. A simple analogy is provided by the relativistic particle: In the classical
theory there is a trajectory which can be parametrised by some essentially arbi-
trary parameter, e.g. the proper time. Reparametrisation invariance leads to one
constraint, p2 +m2 = 0. In the quantum theory, no trajectory exists anymore,
the wave function obeys the Klein-Gordon equation as an analogue of (18), and
any trace of a classical time parameter is lost (although, of course, for the rel-
ativistic particle the background Minkowski spacetime is present, which is not
the case for gravity).

Since the presence of an external time parameter is very important in quan-
tum mechanics – giving rise to such important notions as the unitarity of states
–, it is a priori not clear how to interpret a “timeless” equation of the form
(18), cf. Barbour (1997) and Kiefer (1997). This is called the problem of time. A
related issue is the Hilbert-space problem: What is the appropriate inner product
that encodes the probability interpretation and that is conserved in time? Before
discussing some of the options, it is very useful to first have a look at the explicit
structure of (15) and (16). Introducing the Planck mass mp = (16πG)−1/2 and
setting ~ = 1, the constraint equations read

′′{
− 1

2m2
p

Gab,cd
δ2

δhabδhcd
−m2

p

√
h 3R+ Ĥmat

⊥

}′′
|Ψ [hab]

〉
= 0, (19)

′′{
−2

i
hab∇c

δ

δhbc
+ Ĥmat

a

}′′
|Ψ [hab]

〉
= 0. (20)

The inverted commas indicate that these are formal equations and that the factor
ordering and regularisation problem have not been addressed. In these equations,
3R and

√
h denote the three-dimensional Ricci scalar and the square root of the

determinant of the three-metric, respectively, and a cosmological term has not
been considered here. The quantity Gab,cd = h−1/2(hachbd + hadhbc − habhcd)
plays the role of a metric in configuration space (“DeWitt metric”), and ∇c

denotes the covariant spatial derivative. The matter parts of the constraints,
Ĥmat

⊥ and Ĥmat
a , depend on the concrete choice of matter action which we shall

not specify here. Its form can be strongly constrained from general principles
such as ultralocality (Teitelboim 1980). A tilde denotes a quantum operator in
the standard Hilbert space of matter fields, while the bra and ket notation refers
to the corresponding states.

The second equation (20) expresses the fact that the wave functional is in-
variant with respect to three-dimensional diffeomorphisms (“coordinate trans-
formations”). It is for this reason why one often writes Ψ [3G], where the argu-
ment denotes the coordinate-invariant three-geometry. Since there is, however,
no explicit operator available which acts directly on Ψ [3G], this is only a formal
representation, and in concrete discussions one has to work with (19) and (20).
It must also be remarked that this invariance holds only for diffeomorphisms
that are connected with the identity; for “large” diffeomeorphism, a so-called
θ-structure may arise, similarly to the θ-angle in QCD, see e.g. Kiefer (1993).
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The kinetic term in (19) exhibits an interesting structure: The DeWitt met-
ric Gab,cd has locally the signature diag(−,+,+,+,+,+), rendering the kinetic
term indefinite. Moreover, the one minus sign in the signature suggests that the
corresponding degree of freedom plays the role of an “intrinsic time” (Zeh 1999).
In general this does not, however, render (19) a hyperbolic equation, since even
after dividing out the diffeomorphisms – going to the superspace of all three-
geometries – there remains in general an infinite number of minus signs. In
the special, but interesting, case of perturbations around closed Friedmann cos-
mologies, however, one global minus sign remains, and one is left with a truly
hyperbolic equation (Giulini 1995). A Cauchy problem with respect to intrinsic
time may then be posed. The minus sign in the DeWitt metric can be associated
with the local scale part,

√
h, of the three-metric.

The presence of the minus sign in the DeWitt metric has an interesting inter-
pretation: It reflects the fact that gravity is attractive (Giulini and Kiefer 1994).
This can be investigated by considering the most general class of ultralocal De-
Witt metrics which are characterised by the occurrence of some additional pa-
rameter α:

Gα
ab,cd = h−1/2(hachbd + hadhbc − 2αhabhcd) , (21)

where α = 0.5 is the value corresponding to general relativity. One finds that
there exists a critical value, αc = 1/3, such that for α < αc the DeWitt metric
would become positive definite. One also finds that for α < αc gravity would
become repulsive in the following sense: First, the second time derivative of the
total volume V =

∫
d3x

√
h (for lapse equal to one) would become, for positive

three-curvature, positive instead of negative, therefore leading to an acceleration.
Second, in the coupling to matter the sign of the gravitational constant would
change. From the observed amount of helium one can infer that α must lie
between 0.4 and 0.55.

Standard quantum theory employs the mathematical structure of a Hilbert
space which is needed for the probability interpretation. Does such a structure
also exist in quantum gravity? On a kinematical level, for wave functionals which
are not yet necessarily solutions of the constraint equations, one can try to start
with the standard Schrödinger-type inner product∫

DhabΨ∗[hab(x)]Ψ [hab(x)] ≡ (Ψ, Ψ)S . (22)

For wave functionals which satisfy the diffeomorphism constraints (20), this
would yield divergencies since the integration runs over all “gauge orbits”. In
the connection representation, a preferred measure exists with respect to which
the wave functionals are square integrable functions on the space of connections,
see the contributions by Ashtekar, Lewandowski, and Rovelli to this volume. The
construction is possible because the Hilbert space can be viewed as a limit of
Hilbert spaces with finitely many degrees of freedom. It leads to interesting re-
sults for the spectra of geometric operators such as the area operator. However,
no such product is known in geometrodynamics.



Quantum cosmology 173

Since physical wave functionals have to obey (19) and (20), it might be suffi-
cient if a Hilbert-space structure existed on the space of solutions, not necessarily
on the space of all functionals such as in (22). Since (19) has locally the form of
a Klein-Gordon equation, one might expect to use the inner product

i

∫
ΠxdΣ

ab(x)Ψ∗[hab]


Gab,cd

→
δ

δhcd
−

←
δ

δhcd
Gab,cd


Ψ [hab] ≡ (Ψ, Ψ)KG .

(23)

The (formal) integration runs over a five-dimensional hypersurface at each space
point, which is spacelike with respect to the DeWitt metric. The product (23)
is invariant with respect to deformations of this hypersurface and therefore in-
dependent of “intrinsic time”.

Similar to the situation with the relativistic particle, however, the inner prod-
uct (23) is not positive definite. For the free relativistic particle one can perform
a consistent restriction to a “positive-frequency sector” in which the analogue of
(23) is manifestly positive, provided the spacetime background and the potential
(which must be positive) are stationary, i.e., if there exists a time-like Killing
vector which also preserves the potential. Otherwise, “particle production” oc-
curs and the one-particle interpretation of the theory cannot be maintained. It
has been shown that such a restriction to “positive frequencies” is not possible
in quantum geometrodynamics (Kuchař 1992), the reason being that the Hamil-
tonian is not stationary. As I shall describe in Sect. 4, one can make, at least
for certain states in the “one-loop level” of the semiclassical approximation, a
consistent restriction to a positive-definite sector of (23).

For the relativistic particle one leaves the one-particle sector and proceeds to
a field-theoretic setting, if one has to address situations where the restriction to
positive frequencies is no longer possible. One then arrives at wave functionals
for which a Schrödinger-type of inner product can be formulated. Can one apply
a similar procedure for the Wheeler-DeWitt equation? Since quantum geometro-
dynamics is already a field theory, this would mean performing the transition
to a “third-quantised” theory in which the state in (18) is itself turned into an
operator. The formalism for such a theory is still in its infancy and will not
be presented here (see e.g. Kuchař 1992). In a sense, superstring theory can be
interpreted as providing such a framework.

All these problems could be avoided if it were possible to “solve” the con-
straints classically and make a transition to the physical degrees of freedom,
upon which the standard Schrödinger inner product could be imposed. This
would correspond to the choice of a time variable before quantisation. Formally,
one would have to perform the canonical transformation

(hab, p
cd) −→ (XA, PA;φ

i, pi) , (24)

where A runs from 1 to 4, and i runs from 1 to 2. XA and PA are the kinematical
“embedding variables”, while φi and pi are the dynamical, physical, degrees
of freedom. Unfortunately, such a reduction can only be performed in special
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situations, such as weak gravitational waves, but not in the general case, see
Isham (1992) and Kuchař (1992). The best one can do is to choose the so-called
“York time”, but the corresponding reduction cannot be performed explicitly.
Again, only on the one-loop level of the semiclassical approximation (see Sect. 4)
can the equivalence of the Schrödinger product for the reduced variables and the
Klein-Gordon inner product for the constrained variables be shown.

The problems of time and Hilbert space are thus not yet resolved at the most
fundamental level. It is thus not clear, for example, whether (18) can sensibly be
interpreted only as an eigenvalue equation for eigenvalue zero. Thus the options
that will be discussed in the rest of my contribution are

• to study a semiclassical approximation and to aim at a consistent treatment
of conceptual issues at that level. This is done in Sect. 4. Or

• to look for sensible boundary conditions for the Wheeler-DeWitt equation
and to discuss directly solutions to this equation. This is done in the rest of
this section.

3.3 Role of boundary conditions

Boundary conditions play a different role in quantum mechanics and quantum
cosmology. In quantum mechanics (more generally, quantum field theory with
an external background), boundary conditions can be imposed with respect to
the external time parameter: Either as a condition on the wave function at a
given time, or as a condition on asymptotic states in scattering situations. On
the other hand, the Wheeler-DeWitt equation (18) is a “timeless” equation with
a Klein-Gordon type of kinetic term.

What is the role of boundary conditions in quantum cosmology? Since the
time of Newton one is accustomed to distinguish between dynamical laws and
initial conditions. However, this is not a priori clear in quantum cosmology, and
it might well be that boundary conditions are part of the dynamics. Sometimes
quantum cosmology is even called a theory of initial conditions (Hartle 1997).
Certainly, “initial” can here have two meanings: On the one hand, it can refer
to initial condition of the classical Universe. This presupposes the validity of a
semiclassical approximation (see Sect. 4) and envisages that particular solutions
of (18) could select a subclass of classical solutions in the semiclassical limit.
On the other hand, “initial” can refer to boundary conditions being imposed
directly on (18). Since (18) is fundamentally timeless, this cannot refer to any
classical time parameter but only to intrinsic variables such as “intrinsic time”.
In the following I shall briefly review some boundary conditions that have been
suggested in quantum cosmology; details and additional references can be found
in Halliwell (1991).

Let me start with the no-boundary proposal by Hartle and Hawking (1983).
This does not yield directly boundary conditions on the Wheeler-DeWitt equa-
tion, but specifies the wave function through an integral expression – through a
path integral in which only a subclass of all possible “paths” is being considered.
This subclass comprises all spacetimes that have (besides the boundary where
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the arguments of the wave function are specified) no other boundary. Since the
full quantum-gravitational path integral cannot be evaluated (probably not even
be rigorously defined), one must resort to approximations. These can be semi-
classical or minisuperspace approximations or a combination of both. It becomes
clear already in a minisuperspace approximation that integration has to be per-
formed over complex metrics to guarantee convergence. Depending on the nature
of the saddle point in a semiclassical limit, the wave function can then refer to
a classically allowed or forbidden situation.

Consider the example of a Friedmann Universe with a conformally coupled
scalar field. After an appropriate field redefinition, the Wheeler-DeWitt equation
assumes the form of an indefinite harmonic oscillator,(

∂2

∂a2
− ∂2

∂φ2
− a2 + φ2

)
ψ(a, φ) = 0 . (25)

The implementation of the no-boundary condition in this simple minisuperspace
model selects the following solutions (cf. Kiefer 1991)

ψ1(a, φ) =
1

2π
K0

(
|φ2 − a2|

2

)
, (26)

ψ2(a, φ) =
1

2π
I0

(
φ2 − a2

2

)
, (27)

where K0 and I0 denote Bessel functions. It is interesting to note that these
solutions do not reflect the classical behaviour of the system (the classical so-
lutions are Lissajous ellipses confined to a rectangle in configuration space, see
Kiefer 1990) – I0 diverges for large arguments, while K0 diverges for vanishing
argument (“light cone” in configuration space). Such features cannot always be
seen in a semiclassical limit.

Another boundary condition is the so-called tunneling condition (Vilenkin
1998). It is also formulated in general terms – superspace should contain “outgo-
ing modes” only. However, as with the no-boundary proposal, a concrete discus-
sion can only be made within approximations. Typically, while the no-boundary
proposal leads to real solutions of the Wheeler-DeWitt equation, the tunneling
proposal predicts complex solutions. This is most easily seen in the semiclassi-
cal approximation (see Sect. 4), where the former predicts cosS-type of solu-
tions, while the latter predicts exp iS-type of solutions. (The name “tunneling
proposal” comes from the analogy with situations such as α-decay in nuclear
physics where an outgoing wave is present after tunneling from the nucleus.) A
certain danger is connected with the word “outgoing” because it has a tempo-
ral connotation although (18) is timeless. A time parameter emerges only in a
semiclassical approximation, see the next section.

A different type of boundary condition is the SIC proposal by Conradi and
Zeh (1991). It demands that the wave function be simple for small scale factors,
i.e. that it does not depend on other degrees of freedom. The explicit expres-
sions exhibit many similarities to the no-boundary wave function, but since the
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boundary condition is directly imposed on the wave function without use of path
integrals, it is much more convenient for a discussion of models which correspond
to a classically recollapsing universe.

What are the physical applications that one could possibly use to distinguish
between the various boundary conditions? Some issues are the following:

• Probability for inflation: It is often assumed that the Universe underwent
a period of exponential expansion at an early stage (see also Sect. 4.3).
The question therefore arises whether quantum cosmology can predict how
“likely” the occurrence of inflation is. Concrete calculations address the ques-
tion of the probability distribution for the initial values of certain fields that
are responsible for inflation. Since such calculations necessarily involve the
validity of a semiclassical approximation (otherwise the notion of inflation
would not make sense), I shall give some more details in the next section.

• Primordial black-hole production: The production of primordial black holes
during an inflationary period can in principle also be used to discriminate
between boundary conditions, see e.g. Bousso and Hawking (1996).

• Cosmological parameters: If the wave function is peaked around definite val-
ues of fundamental fields, these values may appear as “constants of Nature”
whose values can thereby be predicted. This was tentatively done for the
cosmological constant (Coleman 1988). Alternatively, the anthropic principle
may be invoked to select amongst the values allowed by the wave function.

• Arrow of time: Definite conclusions about the arrow of time in the Universe
(and the interior of black holes) can be drawn from solutions to the Wheeler-
DeWitt equation, see Kiefer and Zeh (1995).

Quantum cosmology is of course not restricted to quantum general relativity. It
may also be discussed within effective models of string theory, see e.g. Dabrowski
and Kiefer (1997), but I shall not discuss this here.

4 Emergence of a classical world

As I have reviewed in Sect. 3, there is no notion of spacetime at the full level of
quantum cosmology. This was aleady anticipated by Lemâıtre (1931) who wrote:

If the world has begun with a single quantum, the notions of space and
time would altogether fail to have any meaning at the beginning . . . If
this suggestion is correct, the beginning of the world happened a little
before the beginning of space and time.

It is not clear what “before” means in an atemporal situation, but it is obvious
that the emergence of the usual notion of spacetime within quantum cosmology
needs an explanation. This is done in two steps: Firstly, a semiclassical approx-
imation to quantum gravity must be performed (Sect. 4.1). This leads to the
recovery of an approximate Schrödinger equation of non-gravitational fields with
respect to the semiclassical background. Secondly, the emergence of classical
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properties must be explained (Sect. 4.2). This is achieved through the applica-
tion of the ideas presented in Sect. 2.2. A more technical review is Kiefer (1994),
see also Brout and Parentani (1999). A final subsection is devoted to the emer-
gence of classical fluctuations which can serve as seeds for the origin of structure
in the Universe.

4.1 Semiclassical approximation to quantum gravity

The starting point is the observation that there occur different scales in the
fundamental equations (19) and (20): The Planck mass mp associated with

the gravitational part, and other scales contained implicitly in Ĥmat
⊥ . Even for

“grand-unified theories” the relevant particle scales are at least three orders of
magnitude smaller than mp. For this reason one can apply Born-Oppenheimer
type of techniques that are suited to the presence of different scales. In molecular
physics, the large difference between nuclear mass and electron mass leads to a
slow motion for the nuclei and the applicability of an adiabatic approximation.
A similar method is also applied in the nonrelativistic approximation to the
Klein-Gordon equation, see Kiefer and Singh (1991).

In the lowest order of the semiclassical approximation, the wave functional
appearing in (19) and (20) can be written in the form

|Ψ [hab]
〉
= e

im2
pS[hab] |Φ[hab]

〉
, (28)

where S[hab] is a purely gravitational Hamilton-Jacobi function. This is a so-
lution of the vacuum Einstein-Hamilton-Jacobi equations – the gravitational
constraints with the Hamilton-Jacobi values of momenta (gradients of S[hab]).

Substitution of (28) into (19) and (20) leads to new equations for the state
vector of matter fields |Φ[hab]

〉
depending parametrically on the spatial metric{

1

i
Gab,cd

δS

δhab

δ

δhcd
+ Ĥmat

⊥ (hab)

+
1

2i

′′
Gab,cd

δ2S

δhabδhcd

′′
− 1

2m2
p

′′
Gab,cd

δ2

δhabδhcd

′′}
|Φ[hab]

〉
= 0, (29)

{′′
− 2

i
hab∇c

δ

δhbc

′′
+ Ĥmat

a (hab)

}
|Φ[hab]

〉
= 0. (30)

It should be emphasised that on a formal level the factor ordering can be fixed
by demanding the equivalence of various quantisation schemes, see Al’tshuler and
Barvinsky (1996) and the references therein.

The conventional derivation of the Schrödinger equation from the Wheeler-
DeWitt equation consists in the assumption of small back reaction of quantum
matter on the metric background which at least heuristically allows one to dis-
card the third and the fourth terms in (29). Then one considers |Φ[hab]

〉
on the

solution of classical vacuum Einstein equations hab(x, t) corresponding to the
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Hamilton-Jacobi function S[hab], |Φ(t)
〉
= |Φ[hab(x, t)]

〉
. After a certain choice

of lapse and shift functions (N⊥, Na), this solution satisfies the canonical equa-
tions with the momentum pab = δS/δhab, so that the quantum state |Φ(t)

〉
satisfies the evolutionary equation obtained by using

∂

∂t
|Φ(t)

〉
=

∫
d3x ḣab(x)

δ

δhab(x)
|Φ[hab]

〉
(31)

together with the truncated version of equations (29) – (30). The result is the
Schrödinger equation of quantised matter fields in the external classical gravita-
tional field,

i
∂

∂t
|Φ(t)

〉
= Ĥmat|Φ(t)

〉
, (32)

Ĥmat =

∫
d3x

{
N⊥(x)Ĥmat

⊥ (x) +Na(x)Ĥmat
a (x)

}
. (33)

Here, Ĥmat is a matter field Hamiltonian in the Schrödinger picture, parametri-
cally depending on (generally nonstatic) metric coefficients of the curved space-
time background. In this way, the Schrödinger equation for non-gravitational
fields has been recovered from quantum gravity as an approximation.

A derivation similar to the above can already be performed within ordinary
quantum mechanics if one assumes that the total system is in a “timeless” en-
ergy eigenstate, see Briggs and Rost (1999). In fact, Mott (1931) had already
considered a time-independent Schrödinger equation for a total system consist-
ing of an α-particle and an atom. If the state of the α-particle can be described
by a plane wave (corresponding in this case to high velocities), one can make an
ansatz similar to (28) and derive a time-dependent Schrödinger equation for the
atom alone, in which time is defined by the α-particle.

In the context of quantum gravity, it is most interesting to continue the semi-
classical approximation to higher orders and to derive quantum-gravitational
correction terms to (32). This was done in Kiefer and Singh (1991) and, giv-
ing a detailed interpretation in terms of a Feynman diagrammatic language, in
Barvinsky and Kiefer (1998). I shall give a brief description of these terms and
refer the reader to Barvinsky and Kiefer (1998) for all details.

At the next order of the semiclassical expansion, one obtains corrections to
(32) which are proportional to m−2

p . These terms can be added to the mat-
ter Hamiltonian, leading to an effective matter Hamiltonian at this order. It
describes the back-reaction effects of quantum matter on the dynamical gravi-
tational background as well as proper quantum effects of the gravitational field
itself. Most of these terms are nonlocal in character: they contain the gravita-
tional potential generated by the back reaction of quantum matter as well as
the gravitational potential generated by the one-loop stress tensor of vacuum
gravitons. In cases where the matter energy density is much bigger than the
energy density of graviton vacuum polarisation, the dominant correction term is
given by the kinetic energy of the gravitational radiation produced by the back
reaction of quantum matter sources.
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A possible observational test of these correction terms could be provided by
the anisotropies in the cosmic microwave background (Rosales 1997). The tem-
perature fluctuations are of the order 10−5 reflecting within inflationary mod-
els the ratio mI/mp ≈ 10−5, where mI denotes the mass of the scalar field
responsible for inflation (the “inflaton”). The correction terms would then be
(mI/mp)

2 ≈ 10−10 times a numerical constant, which could in principle be
large enough to be measurable with future satellite experiments such as MAP
or PLANCK.

Returning to the “one-loop order” (28) of the semiclassical approximation, it
is possible to address the issue of probability for inflation that was mentioned in
Sect. 3.3, see Barvinsky and Kamenshchik (1994). In this approximation, the in-
ner products (22) and (23) are equivalent and positive definite, see Al’tshuler and
Barvinsky (1996). They can therefore be used to calculate quantum-mechanical
probabilities in the usual sense.

To discuss this probability, the reduced density matrix for the inflaton, ϕ,
should be investigated. This density matrix is calculated from the full quantum
state upon integrating out all other degrees of freedom (here called f),

ρt(ϕ,ϕ
′) =

∫
Df ψ∗

t (ϕ
′, f)ψt(ϕ, f) , (34)

where ψt denotes the quantum state (28) after the parameter t from (32) has
been used.

To calculate the probability one has to set ϕ′ = ϕ. In earlier work, the
saddle-point approximation was only performed up to the highest, tree-level,
approximation. This yields

ρ(ϕ,ϕ) = exp[±I(ϕ)] , (35)

where I(ϕ) = −3m4
p/8V (ϕ) and V (ϕ) is the inflationary poential. The lower sign

corresponds to the no-boundary condition, while the upper sign corresponds to
the tunneling condition. The problem with (3) is that ρ is not normalisable:
mass scales bigger than mp contribute significantly and results based on tree-
level approximations can thus not be trusted.

The situation is improved considerably if loop effects are taken into account
(Barvinsky and Kamenshchik 1994). They are incorporated by the loop effec-
tive action Γloop which is calculated on De-Sitter space. In the limit of large
ϕ (that is relevant for investigating normalisability) this yields in the one-loop
approximation

Γloop(ϕ)|H→∞ ≈ Z ln
H

µ
, (36)

where µ is a renormalisation mass parameter, and Z is the anomalous scaling.
Instead of (35) one has now

ρ(ϕ,ϕ) ≈ H−2(ϕ) exp (±I(ϕ)− Γloop(ϕ))

≈ exp

(
±

3m4
p

8V (ϕ)

)
ϕ−Z−2 . (37)
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This density matrix is normalisable provided Z > −1. This in turn leads to
reasonable constraints on the particle content of the theory, see Barvinsky and
Kamenshchik (1994). It turns out that the tunneling wave function (with an
appropriate particle content) can predict the occurrence of a sufficient amount
of inflation. In earlier tree-level calculations the use of an anthropic principle was
needed to get a sensible result from a non-normalisable wave function through
conditional probabilities, see e.g. Hawking and Turok (1998). This is no longer
the case here.

4.2 Decoherence in quantum cosmology3

As in ordinary quantum mechanics, the semiclassical limit is not yet sufficient
to understand classical behaviour. Since the superposition principle is also valid
in quantum gravity, quantum entanglement will easily occur, leading to super-
positions of “different spacetimes”. It is for this reason that the process of deco-
herence must be invoked to justify the emergence of a classical spacetime.

Joos (1986) gave a heuristic example within Newtonian (quantum) gravity,
in which the superposition of different metrics is suppressed by the interaction
with ordinary particles. How does decoherence work in quantum cosmology? In
particular, what constitutes system and environment in a case where nothing is
external to the Universe? The question is how to divide the degrees of freedom in
the configuration space in a sensible way. It was suggested by Zeh (1986) to treat
global degrees of freedom such as the scale factor (radius) of the Universe or an
inflaton field as “relevant” variables that are decohered by “irrelevant” variables
such as density fluctuations, gravitational waves, or other fields. Quantitative
calculations can be found, e.g., in Kiefer (1987,1992).

Denoting the “environmental” variables collectively again by f , the reduced
density matrix for e.g. the scale factor a is found in the usual way by integrating
out the f -variables,

ρ(a, a′) =
∫

Df Ψ∗(a′, f)Ψ(a, f) . (38)

In contrast to the discussion following (34), the non-diagonal elements of the
density matrix must be calculated. The resulting terms are ultraviolet-divergent
and must therefore be regularised. This was investigated in detail for the case of
bosons (Barvinsky et al. 1999c) and fermions (Barvinsky et al. 1999a). A crucial
point is that standard regularisation schemes, such as dimensional regularisation
or ζ-regularisation, do not work – they lead to Trρ2 = ∞, since the sign in
the exponent of the Gaussian density matrix is changed from minus to plus by
regularisation. These schemes therefore spoil one of the important properties that
a density matrix must obey. This kind of problem has not been noticed before,
since these regularisation schemes had not been applied to the calculation of
reduced density matrices.

3 This and the next subsection are adapted from Kiefer (1999).
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How, then, can (38) be regularised? In Barvinsky et al. (1999a,c) we put
forward the principle that there should be no decoherence if there is no particle
creation – decoherence is an irreversible process. In particular, there should be no
decoherence for static spacetimes. This has led to the use of a certain conformal
reparametrisation for bosonic fields and a certain Bogoliubov transformation for
fermionic fields.

As a concrete example, we have calculated the reduced density matrix for a
situation where the semiclassical background is a De Sitter spacetime, a(t) =
H−1 cosh(Ht), where H denotes the Hubble parameter. This is the most inter-
esting example for the early Universe, since it is generally assumed that there
happened such an exponential, “inflationary”, phase of the Universe, caused by
an effective cosmological constant. Taking various “environments”, the following
results are found for the main contribution to (the absolute value of) the deco-
herence factor, |D|, that multiplies the reduced density matrix for the “isolated”
case:

• Massless conformally-invariant field: Here,

|D| = 1 ,

since no particle creation and therefore no decoherence effect takes place.
• Massive scalar field: Here,

|D| ≈ exp

(
−πm3a

128
(a− a′)2

)
,

and one notices increasing decoherence for increasing a.
• Gravitons: This is similar to the previous case, but the mass m is replaced
by the Hubble parameter H ,

|D| ≈ exp
(
−CH3a(a− a′)2

)
, C > 0 .

• Fermions:

|D| ≈ exp
(
−C′m2a2H2(a− a′)2

)
, C′ > 0 .

For high-enough mass, the decoherence effect by fermions is thus smaller
than the corresponding influence of bosons.

It becomes clear from these examples that the Universe acquires classical prop-
erties after the onset of the inflationary phase. “Before” this phase, the Universe
was in a timeless quantum state which does not possess any classical properties.
Viewed backwards, different semiclassical branches would meet and interfere to
form this timeless quantum state (Barvinsky et al. 1999b).

For these considerations it is of importance that there is a discrimination
between the various degrees of freedom. On the fundamental level of full super-
string theory, for example, such a discrimination is not possible and one would
therefore not expect any decoherence effect to occur at that level.
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In general one would expect not only one semiclassical component of the form
(28), but also many superpositions of such terms. Since (18) is a real equation,
one would in particular expect to have a superposition of (28) with its complex
conjugate. The no-boundary state in quantum cosmology has, for example, such
a form. Decoherence also acts between such semiclassical branches, although
somewhat less effective than within one branch (Barvinsky et al. 1999c). For a
macroscopic Universe, this effect is big enough to warrant the consideration of
only one semiclassical component of the form (28). This constitutes a symmetry-
breaking effect similar to the symmetry breaking for chiral molecules: While in
the former case the symmetry with respect to complex conjugation is broken, in
the latter case one has a breaking of parity invariance (compare Figures 2 and
3 above).

It is clear that decoherence can only act if there is a peculiar, low-entropy,
state for the very early Universe. This lies at the heart of the arrow of time in
the Universe. A simple initial condition like the one in Conradi and Zeh (1991)
can in principle lead to a quantum state describing the arrow of time, see also
Zeh (1999).

4.3 Classicality of primordial fluctuations

According to the inflationary scenario of the early Universe, all structure in
the Universe (galaxies, clusters of galaxies) arises from quantum fluctuations of
scalar fields and scalar fluctuations of the metric. Because also fluctuations of
the metric are involved, this constitutes an effect of (linear) quantum gravity.

These early fluctuations manifest themselves as anisotropies in the cosmic
microwave background radiation and have been observed both by the COBE
satellite and earth-based telescopes. Certainly, these observed fluctuations are
classical stochastic quantities. How do the quantum fluctuations become classi-
cal?

It is clear that for the purpose of this discussion the global gravitational
degrees of freedom can already by considered as classical, i.e. the decoherence
process of Sect. 4.2 has already been effective. The role of the gravitational field
is then twofold: firstly, the expanding Universe influences the dynamics of the
quantum fluctuations. Secondly, linear fluctuations of the gravitational field are
themselves part of the quantum system.

The physical wavelength of a mode with wavenumber k is given by

λphys =
2πa

k
. (39)

Since during the inflationary expansion the Hubble parameter H remains con-
stant, the physical wavelength of the modes leaves the particle horizon, given by
H−1, at a certain stage of inflation, provided that inflation does not end before
this happens. Modes that are outside the horizon thus obey

k

aH
� 1 . (40)
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It turns out that the dynamical behaviour of these modes lies at the heart
of structure formation. These modes re-enter the horizon in the radiation-and
matter-dominated phases which take place after inflation.

For a quantitative treatment, the Schrödinger equation (32) has to be solved
for the fluctuations in the inflationary Universe. The easiest example, which
nevertheless exhibits the same features as a realistic model, is a massless scalar
field. It is, moreover, most convenient to go to Fourier space and to multiply the
corresponding variable with a. The resulting fluctuation variable is called yk,
see Kiefer and Polarski (1998) for details. Taking as a natural initial state the
“vacuum state”, the solution of the Schrödinger equation (32) for the (complex)
variables yk reads4

χ(y, t) =

(
1

π|f |2

)1/2

exp

(
−1− 2iF

2|f |2 |y|2
)

, (41)

where

|f |2 = (2k)−1(cosh 2r + cos 2ϕ sinh 2r), (42)

F =
1

2
sin 2ϕ sinh 2r , (43)

and explicit expressions can be given for the time-dependent functions r and
ϕ. The Gaussian state (41) is nothing but a squeezed state, a state that is well
known from quantum optics. The parameters r and ϕ have the usual interpreta-
tion as squeezing parameter and squeezing angle, respectively. It turns out that
during the inflationary expansion r → ∞, |F | � 1, and ϕ → 0 (meaning here a
squeezing in momentum). In this limit, the state (41) becomes also a WKB state
par excellence. As a result of this extreme squeezing, this state cannot be dis-
tinguished within the given observational capabilities from a classical stochastic
process, as thought experiments demonstrate (Kiefer and Polarski 1998, Kiefer
et al. 1998a). In the Heisenberg picture, the special properties of the state (41)
are reflected in the fact that the field operators commute at different times, i.e.

[ŷ(t1), ŷ(t2)] ≈ 0 . (44)

(Kiefer et al. 1998b). In the language of quantum optics, this is the condi-
tion for a quantum-nondemolition measurement: An observable obeying (44)
can repeatedly be measured with great accuracy. It is important to note that
these properties remain valid after the modes have reentered the horizon in the
radiation-dominated phase that follows inflation (Kiefer et al. 1998a).

As is well known, squeezed states are very sensitive to interactions with other
degrees of freedom (Giulini et al. 1996). Since such interactions are unavoidably
present in the early Universe, the question arises whether they would not spoil

4 Since there is no self-interaction of the field, different modes yk decouple, which is
why I shall suppress the index k in the following.
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the above picture. However, most interactions invoke couplings in field amplitude
space (as opposed to field momentum space) and therefore,

[ŷ, Ĥint] ≈ 0 , (45)

where Ĥint denotes the interaction Hamiltonian. The field amplitudes therefore
become an excellent pointer basis: This basis defines the classical property, and
due to (44) this property is conserved in time. The decoherence time caused by
Ĥint is very small in most cases. Employing for the sake of simplicity a linear
interaction with a coupling constant g, one finds for the decoherence time scale
(Kiefer and Polarski 1998)

tD ≈ λphys
ger

. (46)

For modes that presently re-enter the horizon, one has λphys ≈ 1028cm, er ≈ 1050

and therefore

tD ≈ 10−31g−1sec . (47)

Unless g is very small, decoherence acts on a very short timescale. This conclu-
sion is enforced if higher-order interactions are taken into account. It must be
noted that the interaction of the field modes with its “environment” is an ideal
measurement – the probabilities are unchanged and the main predictions of the
inflationary scenario remain the same (which manifest themselves, for example,
in the form of the anisotropy spectrum of the cosmic microwave background).
This would not be the case, for example, if one concluded that particle number
instead of field amplitude would define the robust classical property. Realistic
models of the early Universe must of course take into account complicated non-
linear interactions, see e.g. Calzetta and Hu (1995) and Matacz (1997). Although
these models will affect the values of the decoherence timescales, the conceptual
conclusions drawn above will remain unchanged.

The results of the last two subsections give rise to the hierarchy of classicality
(Kiefer and Joos 1999): The global gravitational background degrees of freedom
are the first variables that assume classical properties. They then provide the
necessary condition for other variables to exhibit classical behaviour, such as
the primordial fluctuations discussed here. These then serve as the seeds for
the classical structure of galaxies and clusters of galaxies that are part of the
observed Universe.
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43. Lemâıtre, G. (1931): The beginning of the world from the point of view of quantum
theory. Nature 127, 706

44. Matacz, A. (1997): A new theory of stochastic inflation. Phys. Rev. D 55, 1860–
1874

45. Mott, N.F. (1931): On the theory of excitation by collision with heavy particles.
Proc. Cambridge Phil. Soc. 27, 553–560

46. Rosales, J.-L. (1997): Quantum state correction of relic gravitons from quantum
gravity. Phys. Rev. D 55, 4791–4794



Quantum cosmology 187

47. Schrödinger, E. (1935): Discussion of probability relations between separated sys-
tems. Proc. Cambridge Phil. Soc. 31, 555–563

48. Sen, A. (1998): Developments in superstring theory. To be published in the Pro-
ceedings of the 29th International Conference on High-Energy Physics, Vancouver,
Canada, 23-29 July 1998, Electronic report hep-ph/9810356

49. Teitelboim, C. (1980): The Hamiltonian structure of space-time. In: General rela-
tivity and gravitation, edited by A. Held (Plenum Press, New York)

50. Vilenkin, A. (1998): The quantum cosmology debate. Contribution to the con-
ference on particle physics and the early universe (COSMO 98), Monterey, CA,
15.-20.11.1998, Electronic report gr-qc/9812027

51. Zeh, H.D. (1986): Emergence of classical time from a universal wave function. Phys.
Lett. A 116, 9–12

52. Zeh, H.D. (1997): What is achieved by decoherence? In New Developments on
Fundamental Problems in Quantum Physics, edited by M. Ferrer and A. van der
Merwe (Kluwer Academic, Dordrecht)

53. Zeh, H.D. (1999): The physical basis of the direction of time (Springer, Berlin)
54. Zurek, W.H. (1991): Decoherence and the Transition from Quantum to Classical.

Physics Today 44 (Oct.), 36–44; see also the discussion in Physics Today (letters)
46 (April), 13



Single-Exterior Black Holes
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D-14476 Golm, Germany

Abstract. We discuss quantum properties of the single-exterior, “geon”-type black
(and white) holes that are obtained from the Kruskal spacetime and the spinless
Bañados-Teitelboim-Zanelli hole via a quotient construction that identifies the two
exterior regions. For the four-dimensional geon, the Hartle-Hawking type state of a
massless scalar field is thermal in a limited sense, but there is a discrepancy between
Lorentzian and Riemannian derivations of the geon entropy. For the three-dimensional
geon, the state induced for a free conformal scalar field on the conformal boundary is
similarly thermal in a limited sense, and the correlations in this state provide support
for the holographic hypothesis in the context of asymptotically Anti-de Sitter black
holes in string theory.

1 Introduction

In quantum field theory on the Kruskal spacetime, one way to arrive at the
thermal effects is through the observation that the spacetime has two exterior
regions separated by a bifurcate Killing horizon. A free scalar field on the Kruskal
spacetime has a vacuum state, known as the Hartle-Hawking vacuum [1,2], that is
invariant under all the continuous isometries of the spacetime [3,4]. This state is
pure, but the expectation values of operators with support in one exterior region
are thermal in the Hawking temperature [1–5]. Similar observations hold for
field theory on the nonextremal (2+1)-dimensional Bañados-Teitelboim-Zanelli
(BTZ) black hole, both with and without spin [6], and also for conformal field
theory on the conformal boundary of the BTZ hole [7–9].

In all these cases one has a vacuum state that knows about the global geom-
etry of the spacetime, in particular about the fact that the spacetime has two
exterior regions. Suppose now that we modify the spacetime in some ‘reason-
able’ fashion so that one exterior region remains as it is, and all the modification
takes place behind the Killing horizons of this exterior region. Suppose further
that the modified spacetime admits a vacuum state that is, in some reasonable
sense, a Hartle-Hawking type vacuum. Can we then, by probing the new vacuum
in the unmodified exterior region, discover that something has happened to the
spacetime behind the horizons? In particular, as the new spacetime is still a
black (and white) hole, does the new vacuum exhibit thermality, and if so, at
what temperature? In the (2+1)-dimensional case, the analogous questions can
also be raised for conformal field theory on the conformal boundary.

These lectures address the above questions for a particular modification of
the Kruskal manifold and the spinless BTZ hole: we modify the spacetimes by

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 188−202, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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a quotient construction that identifies the two exterior regions with each other.
For Kruskal, the resulting spacetime is referred to as the RP3 geon [10,11], and
for BTZ, as the RP2 geon [9]. These spacetimes are black (and white) holes,
and their only singularities are those inherited from the singularities of the two-
exterior holes.

On the RP3 geon, a free scalar field has a vacuum induced from the Hartle-
Hawking vacuum on Kruskal. The vacuum is not fully thermal for static exte-
rior observers, but it appears thermal when probed with operators that do not
see certain types of correlations, such as in particular operators with support
at asymptotically late times, and the apparent temperature is then the usual
Hawking temperature. However, a naive application of Euclidean-signature path-
integral methods via saddle-point methods yields for the geon only half of the
Bekenstein-Hawking entropy of the Schwarzschild hole with the same mass.

The situation on the conformal boundary of the RP2 geon is analogous. The
quotient construction from the conformal boundary of Anti-de Sitter space in-
duces on the boundary of the geon a Hartle-Hawking type vacuum that is not
fully thermal, but it appears thermal when probed with operators that do not
see certain types of correlations, and the apparent temperature is then the usual
Hawking temperature of the BTZ hole. The properties of the boundary vacuum
turn out to reflect in a surprisingly close fashion the geometry of the geon space-
time. This can be interpreted as support for the holographic hypothesis [12,13],
according to which physics in the bulk of a spacetime should be retrievable from
physics on the boundary of the spacetime. It further suggests that single-exterior
black holes can serve as a test bed for the versions of the holographic hypothesis
that arise in string theory for asymptotically Anti-de Sitter spacetimes via the
Maldacena duality conjectures [7,14–16].

The material is based on joint work [9,17] with Don Marolf, whom I would
like to thank for a truly delightful collaboration. I would also like to thank the
organizers of the Polanica Winter School for the opportunity to present the work
in a most pleasant and inspiring atmosphere.

2 Kruskal Manifold and the RP3 Geon

Recall that the metric on the Kruskal manifold ML reads

ds2 =
32M3

r
exp

(
− r

2M

) (
−dT 2 + dX2

)
+ r2dΩ2 , (1)

where dΩ2 = dθ2 + sin2 θ dϕ2 is the metric on the unit two-sphere, M > 0,
X2 − T 2 > −1, and r is determined as a function of T and X by( r

2M
− 1

)
exp

( r

2M

)
= X2 − T 2 . (2)

The coordinates are global, apart from the elementary singularities of the spher-
ical coordinates. ML is manifestly spherically symmetric, and it has in addition
the Killing vector

V L :=
1

4M
(X∂T + T∂X) , (3)
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which is timelike for |X | > |T | and spacelike for |X | < |T |. A conformal diagram
of ML, with the two-spheres suppressed, is shown in Fig. 1.

i0

I+

I −

i0

I+

I −

X
=

0

T=0

Fig. 1. Conformal diagram of the Kruskal spacetime. Each point represents a sup-
pressed S2 orbit of the O(3) isometry group

In each of the four quadrants of ML one can introduce Schwarzschild co-
ordinates (t, r, θ, ϕ) that are adapted to the isometry generated by V L. In the
“right-hand-side” exterior region, X > |T |, the coordinate transformation reads

T =
( r

2M
− 1

)1/2

exp
( r

4M

)
sinh

(
t

4M

)
,

X =
( r

2M
− 1

)1/2

exp
( r

4M

)
cosh

(
t

4M

)
, (4)

with r > 2M and−∞ < t < ∞. The exterior metric takes then the Schwarzschild
form

ds2 = −
(
1− r

2M

)
dt2 +

dr2(
1− r

2M

) + r2dΩ2 , (5)

and V L = ∂t.
Consider now on ML the isometry

JL : (T,X, θ, ϕ) �→ (T,−X,π − θ, ϕ+ π) . (6)

JL is clearly involutive, it acts properly discontinuously, it preserves the time
orientation and spatial orientation, and it commutes with the spherical symme-
try of ML. The quotient space ML/JL is therefore a spherically symmetric,
space and time orientable manifold. A conformal diagram of ML/JL is shown
in Fig. 2. ML/JL is an inextendible black (and white) hole spacetime, and its
only singularities are those inherited from the singularities of ML. It has only
one exterior region, and its spatial topology is RP3\{point at infinity}. We refer
to ML/JL as the RP3 geon [10,11].
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i0

I+

I −

X
=

0

T=0

Fig. 2. Conformal diagram of the RP3 geon ML/JL. Each point represents a sup-
pressed orbit of the O(3) isometry group. The region X > 0 is isometric to the region
X > 0 of ML, shown in Fig. 1, and the O(3) isometry orbits in this region are two-
spheres. At X = 0, the O(3) orbits have topology RP2

The exterior region of ML/JL is clearly isometric to an exterior region
of ML. In terms of the coordinates shown in Fig. 2, the exterior region is at
X > |T |, and one can introduce in the exterior region standard Schwarzschild
coordinates by (4). As the Killing vector V L on ML changes its sign under JL,
the timelike Killing vector ∂t on the exterior of ML/JL can however not be con-
tinued into a globally-defined Killing vector on ML/JL. This means that not all
the constant t hypersurfaces in the exterior region of ML/JL are equal: among
them, there is only one (in Fig. 2, the one at T = 0) that can be extended into
a smoothly-embedded Cauchy hypersurface for ML/JL.

The quotient construction from ML to ML/JL can be analytically continued
to the Riemannian (i.e., positive definite) sections via the formalism of (anti-
)holomorphic involutions [18,19]. The Riemannian section of the Kruskal hole,
denoted by MR, is obtained from (1) and (2) by setting T = −iT̃ and letting T̃
and X take all real values [20]. The analytic continuation of JL, denoted by JR,
acts on MR by

JR : (T̃ , X, θ, ϕ) �→ (T̃ ,−X,π − θ, ϕ+ π) , (7)

and the Riemannian section of the RP3 geon is MR/JR.
OnMR we can introduce the Riemannian Schwarzschild coordinates (t̃, r, θ, ϕ),

obtained from the Lorentzian Schwarzschild coordinates for r > 2M by t = −it̃.
These Riemannian Schwarzschild coordinates are global, with the exception of a
coordinate singularity at the Riemannian horizon r = 2M , provided they are un-
derstood with the identification (t̃, r, θ, ϕ) ∼ (t̃+8πM, r, θ, ϕ) [20]. On MR/JR,
the Riemannian Schwarzschild coordinates need to be understood with the ad-
ditional identification (t̃, r, θ, ϕ) ∼ (t̃ + 4πM, r, π − θ, ϕ + π), which arises from
the action (7) of JR on MR. The Killing vector ∂t̃ is global on MR, and it gen-
erates an U(1) isometry group with a fixed point at the Riemannian horizon. On
MR/JR, on the other hand, ∂t̃ is global only as a line field but not as a vector
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field, and the analogous U(1) isometry does not exist. Embedding diagrams of
MR and MR/JR, with the orbits of the spherical symmetry suppressed, are
shown in Figs. 3 and 4.

T=0
~

Fig. 3. A “sock” representation of the Riemannian section MR of the complexified
Kruskal manifold. The S2 orbits of the O(3) isometry group are suppressed, and the re-
maining two dimensions (T̃ , X) are shown as an isometric embedding into Euclidean R3 .
The isometry generated by ∂t̃ rotates the two shown dimensions

T=0
~

Fig. 4. A representation of the Riemannian section MR/JR of the complexified RP3

geon as the “front half” of the the MR sock. The orbits of the O(3) isometry group
are suppressed, as in Fig. 3. The generic orbits have topology S2, but those at the
“boundary” of the diagram (dashed line) have topology RP2

3 Vacua on Kruskal and on the RP3 Geon

We now consider a free scalar field on the Kruskal manifold and on the RP3

geon. For concreteness, we take here the field to be massless. The situation with
a massive field is qualitatively similar [17].

Recall that the Hartle-Hawking vacuum |0K〉 of a massless scalar field on the
Kruskal manifold ML can be characterized by its positive frequency properties
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along the affine parameters of the horizon generators [1,2,5], by the complex
analytic properties of the Feynman propagator upon analytic continuation to
MR [1], or by the invariance under the continuous isometries of ML [3,4]. |0K〉 is
regular everywhere onML, but it is not annihilated by the annihilation operators
associated with the future timelike Killing vectors in the exterior regions: a static
observer in an exterior region sees |0K〉 as an excited state. We have the expansion

|0K〉 =
∑
i···k

fi···k
(
aRi

)† (
aLi

)† · · · (aRk )† (aLk )† |0B,K〉 , (8)

where the Boulware vacuum |0B,K〉 is the vacuum with respect to the timelike

Killing vectors in the exterior regions,
(
aRi

)†
are the creation operators with

respect to this Killing vector in the right-hand-side exterior region, and
(
aLi

)†
are the creation operators with respect to this Killing vector in the left-hand-side
exterior region.

|0K〉 thus contains Boulware excitations in correlated pairs, such that one
member of the pair has support in the right-hand-side exterior and the other
member in the left-hand-side exterior. An operator with support in (say) the
right-hand-side exterior does not couple to the left-hand-side excitations, and the
expectation values of such operators in |0K〉 thus look like expectation values in
a mixed state. From the detailed form of the expansion coefficients fi···k (which
we do not write out here) it is seen that this mixed state is thermal, and it has

at infinity the Hawking temperature T = (8πM)
−1

.
Now, through the quotient construction from ML to ML/JL, |0K〉 induces

on ML/JL a Hartle-Hawking type vacuum, which we denote by |0G〉. Again,
|0G〉 can be characterized by its positive frequency properties along the affine
parameters of the horizon generators, or by the complex analytic properties of
the Feynman propagator [17]. |0G〉 has the expansion

|0G〉 =
∑
i···k

f̃i···k
(
ã
(1)
i

)† (
ã
(2)
i

)†
· · ·

(
ã
(1)
k

)† (
ã
(2)
k

)†
|0B,G〉 , (9)

where |0B,G〉 is the Boulware vacuum in the single exterior region and
(
ã
(α)
i

)†
are

the creation operators of Boulware particles in the exterior region. The indices
i and α now label a complete set of positive frequency Boulware modes in the
single exterior region.

We see from (9) that |0G〉 contains Boulware excitations in correlated pairs,
but the crucial point is that both members of each pair have support in the single
exterior region. Consequently, the expectation values of arbitrary operators in
the exterior region are not thermal. However, for operators that do not contain
couplings between modes with α = 1 and α = 2, the expectation values turn
out to be thermal, with the Hawking temperature T = (8πM)−1. One class
of operators for which this is the case are operators with, roughly speaking,
support at asymptotically late (or early) times: the reason is that an excitation
with support at asymptotically late exterior times is correlated with one with
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support at asymptotically early exterior times. Note that “early” and “late” here
mean compared with the distinguished exterior spacelike hypersurface mentioned
in Sect. 2 (in Fig. 2, the one at T = 0).

Thus, for a late-time observer in the exterior region of ML/JL, the state
|0G〉 is indistinguishable from the state |0K〉 on ML. This conclusion can also be
reached by analyzing the response of a monopole particle detector, or from an
emission-absorption analysis analogous to that performed for |0K〉 in [1], provided
certain technical assumptions about the falloff of the two-point functions in |0G〉
hold [17].

4 Entropy of the RP3 Geon?

As explained above, for a late-time exterior observer in ML/JL the state |0G〉
is indistinguishable from the state |0K〉 on ML. The late-time observer can
therefore promote the classical first law of black hole mechanics [21] into a first
law of black hole thermodynamics exactly as for the Kruskal black hole [22–24].
The observer thus finds for the thermodynamic late time entropy of the geon
the usual Kruskal value 4πM2, which is one quarter of the area of the geon
black hole horizon at late times. If one views the geon as a dynamical black-hole
spacetime, with the asymptotic far-future horizon area 16πM2, this is the result
one might have expected on physical grounds.

On the other hand, the area-entropy relation for the geon is made subtle
by the fact that the horizon area is not constant along the horizon. Away from
the intersection of the past and future horizons, the horizon duly has topology
S2 and area 16πM 2, just as in Kruskal. The critical surface at the intersection
of the past and future horizons, however, has topology RP2 and area 8πM2.
As it is precisely this critical surface that belongs to both the Lorentzian and
Riemannian sections of the complexified manifold, and constitutes the horizon of
the Riemannian section, one may expect that methods utilizing the Riemannian
section of the complexified manifold [20,25] produce for the geon entropy the
value 2πM2, which is one quarter of the critical surface area, and only half
of the Kruskal entropy. This indeed is the case, provided the surface terms in
the Riemannian geon action are handled in a way suggested by the quotient
construction from MR to MR/JR [17].

There are several possible physical interpretations for this disagreement be-
tween the Lorentzian and Riemannian results for the entropy. At one extreme,
it could be that the path-integral framework is simply inapplicable to the geon,
for reasons having to do with the absence of certain globally-defined symmetries.
For instance, despite the fact that the exterior region of ML/JL is static, the
restriction of |0G〉 to this region is not. Also, the asymptotic region of MR/JR

does not have a globally-defined Killing field, and the homotopy group of any
neighborhood of infinity in MR/JR is Z2 as opposed to the trivial group. It may
well be that such an asymptotic structure does not satisfy the boundary condi-
tions that should be imposed in the path integral for the quantum gravitational
partition function.
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At another extreme, it could be that the path-integral framework is applicable
to the geon, and our way of applying it is correct, but the resulting entropy is
physically distinct from the subjective thermodynamic entropy associated with
the late-time exterior observer. If this is the case, the physical interpretation of
the path-integral entropy might be in the quantum statistics in the whole exterior
region, and one might anticipate this entropy to arise from tracing over degrees
of freedom that are in some sense unobservable. It would thus be interesting
to see see whether any state-counting calculation for the geon entropy would
produce agreement with the path-integral result.

5 AdS3, the Spinless Nonextremal BTZ Hole,
and the RP2 Geon

We now turn to 2+1 spacetime dimensions. In this section we review how the
spinless nonextremal BTZ hole and the RP2 geon arise as quotient spaces of the
three-dimensional Anti-de Sitter space, and how this quotient construction can
be extended to the conformal boundaries.

5.1 AdS3, its Covering Space, and the Conformal Boundary

Recall that the three-dimensional Anti-de Sitter space (AdS3) can be defined as
the hyperboloid

−1 = −(T 1)
2 − (T 2)

2
+ (X1)

2
+ (X2)

2
(10)

in R2,2 with the metric

ds2 = −(dT 1)
2 − (dT 2)

2
+ (dX1)

2
+ (dX2)

2
. (11)

We have here normalized the Gaussian curvature of AdS3 to −1. This embedding
representation makes transparent the fact that AdS3 is a maximally symmetric
space with the isometry group O(2, 2).

For understanding the structure of the infinity, we introduce the coordinates
(t, ρ, θ) by [26]

T 1 =
1 + ρ2

1− ρ2
cos t , T 2 =

1 + ρ2

1− ρ2
sin t ,

X1 =
2ρ

1− ρ2
cos θ , X2 =

2ρ

1− ρ2
sin θ . (12)

With 0 ≤ ρ < 1 and the identifications (t, ρ, θ) ∼ (t, ρ, θ + 2π) ∼ (t + 2π, ρ, θ),
these coordinates can be understood as global on AdS3, apart from the elemen-
tary coordinate singularity at ρ = 0. The metric reads

ds2 =
4

(1− ρ2)2

[
−1

4
(1 + ρ2)

2
dt2 + dρ2 + ρ2dθ2

]
. (13)
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Dropping now from (13) the conformal factor 4(1− ρ2)
−2

yields a spacetime
that can be regularly extended to ρ = 1, and the timelike hypersurface ρ = 1
in this conformal spacetime is by definition the conformal boundary of AdS3.
It is a timelike two-torus coordinatized by (t, θ) with the identifications (t, θ) ∼
(t, θ + 2π) ∼ (t+ 2π, θ), and it has the flat metric

ds2 = −dt2 + dθ2 . (14)

The conformal boundary construction generalizes in an obvious way to the
universal covering space of AdS3, which we denote by CAdS3. The only difference
is that the coordinate t is not periodically identified. The conformal boundary
of CAdS3, which we denote by BC , is thus a timelike cylinder with the metric
(14) and the identification (t, θ) ∼ (t, θ + 2π).

5.2 The Spinless Nonextremal BTZ Hole

Let ξint be on CAdS3 the Killing vector induced by the boost-like Killing vector
ξemb := −T 1∂X1 − X1∂T 1 of R2,2 , and let Dint denote the largest subset of
CAdS3 that contains the hypersurface t = 0 and in which ξint is spacelike.
Given a prescribed positive parameter a, the isometry exp(aξint) generates a
discrete isometry group Γint � Z of Dint. The spinless nonextremal BTZ hole
is by definition the quotient space Dint/Γint [6,27]. A conformal diagram, with
the S1 factor arising from the identification suppressed, is shown in Fig. 5. The
horizon circumference is a, and the ADM mass is M = a2/(32π2G3), where G3

is the (2+1)-dimensional Newton’s constant. For further discussion, including
expressions for the metric in coordinates adapted to the isometries, we refer
to [6,27].

Fig. 5. A conformal diagram of the BTZ hole. Each point in the diagram represents
a suppressed S1. The involution J̃int introduced in Subsect. 5.3 consists of a left-
right reflection about the dashed vertical line, followed by a rotation by π on the
suppressed S1



Single-Exterior Black Holes 197

As seen in Fig. 5, the BTZ hole has two exterior regions, and the infinities
are asymptotically Anti-de Sitter. The point of interest for us is that each of
the infinities has a conformal boundary that is induced from BC by the quotient
construction. Technically, one observes that ξint induces on BC the conformal
Killing vector ξ := cos t sin θ ∂θ + sin t cos θ ∂t, and that Dint reaches BC in the
two diamonds

DR := {(t, θ) | 0 < θ < π, |t| < π/2− |θ − π/2|} ,

DL := {(t, θ) | −π < θ < 0, |t| < π/2− |θ + π/2|} . (15)

The two conformal boundaries of the BTZ hole are then the quotient spaces
DR/ΓR and DL/ΓL, where ΓR and ΓL are the restrictions to respectively DR

and DL of the conformal isometry group of BC generated by exp(aξ) [7,8]. To
make this explicit, we cover DR by the coordinates

α = − ln tan [(θ − t)/2] ,

β = ln tan [(θ + t)/2] , (16)

in which the metric induced from (14) is conformal to

ds2 = −
(
2π

a

)2

dα dβ , (17)

and ξ = −∂α+∂β . The quotient spaceDR/ΓR, with the metric induced from (17),
is thus isometric to BC with the metric (14). In particular, it has topology R×S1 .
It can be shown [7–9] that the conventionally-normalized Killing vector of the
BTZ hole that is timelike in the exterior regions induces on DR/ΓR the timelike
Killing vector η = ∂α + ∂β . Analogous observations apply to DL/ΓL.

5.3 The RP2 Geon

The RP2 geon is obtained from the spinless BTZ hole in close analogy with the
quotient construction used with the RP3 geon in Sect. 2. We denote the relevant
involutive isometry of the BTZ hole by J̃int: in the conformal diagram of Fig. 5,
J̃int consists of a left-right reflection about the dashed vertical line, followed
by a rotation by π on the suppressed S1. A conformal diagram of the quotient
space, the RP2 geon, is shown in Fig. 6. It is clear that the RP2 geon is a black
(and white) hole spacetime with a single exterior region that is isometric to one
exterior region of the BTZ hole. It is time orientable but not space orientable, and
the spatial topology is RP2\{point at infinity}. The local and global isometries
closely parallel those of the RP3 geon [9].

The map J̃int can clearly be extended to the conformal boundary of the BTZ
hole, where it defines an involution J̃ that interchanges the two boundary com-
ponents. Quotienting the conformal boundary of the BTZ hole by this involution
gives the conformal boundary of the RP2 geon, which is thus isomorphic to one
boundary component of the BTZ hole. Note that although the RP2 geon is not
space orientable, its conformal boundary R × S1 is.
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Fig. 6. A conformal diagram of the RP2 geon. The region not on the dashed line is
identical to that in the diagram of Fig. 5, each point representing a suppressed S1 in
the spacetime. On the dashed line, each point in the diagram represents again an S1

in the spacetime, but with only half of the circumference of the S1’s in the diagram of
Fig. 5

6 Vacua on the Conformal Boundaries

We now turn to a free conformal scalar field on the boundaries of CAdS3, the
BTZ hole, and the RP2 geon.

Let |0〉 denote on BC the vacuum state with respect to the timelike Killing
vector ∂t. We wish to know what kind of states |0〉 induces on the conformal
boundaries of the BTZ hole and the RP2 geon. For concreteness, we focus the
presentation on the non-zero modes of the field. The subtleties with the zero-
modes are discussed in [9].

Consider the boundary of the BTZ hole. As noted above, the timelike Killing
vectors on the two components do not lift to the timelike Killing vector ∂t on BC :
the future timelike Killing vector on DR/ΓR lifts to [a/(2π)]η, and an analogous
statement holds for DL/ΓL. To interpret the state induced by |0〉 on the BTZ
hole boundary in terms of the BTZ particle modes, we must first first write
the state induced by |0〉 on DR ∪DL in terms of continuum-normalized particle
states that are positive frequency with respect to η on DR and with respect to the
analogous Killing vector on DL, and then restrict to appropriately periodic field
modes in order to accommodate the identification by exp(aξ). This calculation
is quite similar to expressing the Minkowski vacuum in terms of Rindler particle
modes [4,28,29]. Denoting the state induced from |0〉 by |BTZ〉, we have the
expansion

|BTZ〉 =
∑
i···k

fi···k
(
aRi

)† (
aLi

)† · · · (aRk )† (aLk )† |0〉R |0〉L , (18)

where |0〉R and |0〉L are respectively the vacua on the two boundary components

with respect to their timelike Killing vectors,
(
aRi

)†
are the creation operators
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with respect to this Killing vector on DR/ΓR, and
(
aLi

)†
are the creation opera-

tors with respect to this Killing vector on DL/ΓL. The analogy to the expansion
(8) of the Hartle-Hawking vacuum on Kruskal is clear: the excitations come in
correlated pairs, the two members of each pair now living on different boundary
components. Restriction to one boundary component yields a thermal state, and
when the normalization of the boundary timelike Killing vector is matched to
that in the bulk of the spacetime, the temperature turns out to be the Hawking
temperature of the BTZ hole, a/4π2. This is the result first found in [7].

The boundary of the RP2 geon has a single connected component. Denoting
the state induced from |0〉 by |RP2〉, we have the expansion

|RP2〉 =
∑
i···k

f̃i···k
(
ã
(+)
i

)† (
ã
(−)
i

)†
· · ·

(
ã
(+)
k

)† (
ã
(−)
k

)†
|0〉R , (19)

where |0〉R now denotes the geon boundary vacuum with respect to the timelike

Killing vector,
(
ã
(α)
i

)†
are the creation operators with respect to this Killing

vector, and the indices i and α label the modes. The modes with α = + are
right-movers and the modes with α = − are left-movers. The analogy to the
expansion (9) of the Hartle-Hawking type vacuum on the RP

3 geon is clear.
For operators that do not contain couplings between modes with α = + and
α = −, the expectation values turn out to be thermal, with the BTZ Hawking
temperature a/4π2.

As shown in Table 1, several properties of the state |RP2〉 reflect properties of
the RP2 geon spacetime geometry. First, |RP2〉 is a pure state on the boundary
cylinder R × S1: this follows by construction since (unlike with the BTZ hole)
the single cylinder constitutes the whole conformal boundary. Second, |RP2〉 is
an excited state with respect to the boundary timelike Killing field. This can
be understood to reflect the fact that the spacetime attached to the boundary
is not CAdS3. Third, it can be shown that |RP2〉 is not invariant under trans-
lations generated by the timelike Killing vector on the boundary. This reflects
the absence on the spacetime of a globally-defined Killing vector that would be
timelike in the exterior region (cf. the discussion of the isometries of the RP3

geon in Sect. 2). Thus, |RP2〉 “knows” not just about the exterior region of the
RP

2 geon but also about the region behind the horizons.
Fourth, the correlations in |RP2〉 are between the right-movers and the left-

movers. This is a direct consequence of the fact that the map J̃int on the BTZ hole
reverses the spatial orientation, and it reflects thus the spatial nonorientability of
the geon. Fifth, |RP2〉 appears thermal in the Hawking temperature for operators
that do not see the correlations: this reflects the fact that the geon is a black
(and white) hole spacetime.

Finally, the expectation value of the energy in |RP2〉 is, in the limit a � 1,
equal to a2/48π2, which is quadratic in a and thus proportional to the ADM mass
of the geon. The energy expectation value in the state |BTZ〉 on one boundary
cylinder of the BTZ hole is also equal to a2/48π2, for a � 1. In this sense, the
energy expectation value on a single boundary component is the same in |0〉RP2
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and |BTZ〉. The analogous property in the spacetime is that the ADM mass
at one infinity is not sensitive to whether a second infinity exists behind the
horizons.

Table 1. Properties of the state |RP2〉, and the corresponding properties of the RP2

geon spacetime

|RP2〉 RP
2 geon geometry

pure state boundary connected

excited state not Anti-de Sitter

not static no global KVF

correlations: left-movers with right-movers spatially nonorientable

right-movers (left-movers) thermal, T = a/4π2 black hole, TH = a/4π2

〈E〉 = a2/48π2, a � 1 M = a2/(32π2G3)

7 Holography and String Theory

We have seen that the state |RP2〉 on the boundary cylinder of the RP2 geon
mirrors several aspects of the spacetime geometry of the RP2 geon. Some of this
mirroring is immediate from the construction, such as the property that |RP2〉
is a pure state. Some aspects of the mirroring appear however quite nontrivial,
especially the fact that the energy expectation value turned out to be propor-
tional to the ADM mass, and with the same constant of proportionality as for
the vacuum |BTZ〉 on the boundary of the BTZ hole. One can see this as a piece
of evidence in support of the holographic hypothesis [12,13], according to which
physics in the bulk of a spacetime should be retrievable from physics on the
boundary of the spacetime.

One would certainly not expect a free conformal scalar field on the bound-
ary of a spacetime to carry all the information about the spacetime geometry.
However, for certain spacetimes related to Anti-de Sitter space, a more precise
version of the holographic hypothesis has emerged in string theory in the form
of the Maldacena duality conjectures [7,14–16]. In particular, the 10-dimensional
spacetime CAdS3 × S3 × T 4, with a flat metric on the T4 and a round metric
on the S3, is a classical solution to string theory, and the duality conjectures
relate string theory on this spacetime to a certain conformal nonlinear sigma-
model on the conformal boundary of the CAdS3 component. Upon quotienting
from CAdS3 to the (in general spinning) BTZ hole, the conformal field theory
on the boundary ends in a thermal state analogous to our |BTZ〉, but with an
energy expectation value that in the high temperature limit is not merely pro-
portional to but in fact equal to the ADM mass of the hole [7]. This result can
be considered a strong piece of evidence for the duality conjectures.
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It would now be of obvious interest to adapt our free scalar field analysis
on the boundary of the RP

2 geon to a string theoretic context in which the
duality conjectures would apply. One would expect the boundary state again
to appear thermal in the Hawking temperature under some restricted set of
observations. The crucial question for the the holographic hypothesis is how the
correlations in the boundary state might reflect the geometry of the spacetime.
As a preliminary step in this direction, a toy conformal field theory that mimics
some of the anticipated features of the extra dimensions was considered in [9],
and the energy expectation value in this toy theory was found to be equal to the
geon ADM mass in the high temperature limit.

8 Concluding Remarks

The results presented here for the RP3 geon and the RP2 geon provide evidence
that single-exterior black holes offer a nontrivial arena for scrutinizing quantum
physics of black holes. It remains a subject to future work to understand to what
extent the results reflect the peculiarities of these particular spacetimes, and to
what extent they might have broader validity.

In some respects the RP3 and RP2 geons are certainly quite nongeneric black
hole spacetimes. For example, our quotient constructions on Kruskal and the
spinless BTZ hole do not immediately generalize to accommodate spin, as the pu-
tative isometry would need to invert the angular momentum. Similarly, the quo-
tient construction on Kruskal does not immediately generalize to the Reissner-
Nordström hole, as the relevant isometry would invert the electric field. Also,
the spatial nonorientability of the RP2 geon may lead to difficulties in the string
theoretic context. However, in 2+1 dimensions there exist locally Anti-de Sitter
single-exterior black (and white) hole spacetimes that admit a spin, and one can
choose their spatial topology to be orientable, for example T 2\{point at infinity}
[26,30]. A natural next step would be to consider quantum field theory on these
spinning “wormhole” spacetimes and on their conformal boundaries.
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The electromagnetic, weak, strong and gravitational interactions are de-
scribed by singular Lagrangians, so that their Hamiltonian formulation requires
Dirac-Bergmann theory of constraints [1,2]. The requirements of gauge and/or
diffeomorphism invariance, plus manifest Lorentz covariance in the case of flat
spacetime, force us to work with redundant degrees of freedom. In the standard
SU(3)xSU(2)xU(1) model of elementary particles in Minkowski spacetime the
reduction to the physical degrees of freedom is done only at the quantum level
with the BRST method. However, in this way only infinitesimal gauge transfor-
mations in the framework of local quantum field theory are considered, so that
there are many open problems: the understanding of finite gauge transforma-
tions and of the associated moduli spaces, the Gribov ambiguity dependence on
the choice of the function space for the fields and the gauge transformations, the
confinement of quarks, the definition of relativistic bound states and how to put
them among the asymptotic states, the nonlocality of charged states in quan-
tum electrodynamics, not to speak of the foundational and practical problems
posed by gravity. While behind the gauge freedom of gauge theories proper there
are Lie groups acting on some internal space so that the measurable quantities
must be gauge invariant, the gauge freedom of theories invariant under diffeo-
morphism groups of the underlying spacetime (general relativity, string theory
and reparametrization invariant systems of relativistic particles) concerns the
arbitrariness for the observer in the choice of the definition of “what is space
and/or time” (and relative times in the case of particles), i.e. of the definitory
properties either of spacetime itself or of the measuring apparatuses.

To try to clarify some of these problems, I decided to study systematically
the classical Hamiltonian description of the four interactions (see Ref. [3] for
a complete review of the program and Ref.[4] for previous reviews). The first
stage was to understand how and when it is possible to extract a global canon-
ical basis of physical degrees of freedom (gauge invariant Dirac’s observables).
It turns out that, when the configuration space is not compact, this can be
achieved with special Shanmugadhasan canonical transformations both in the
finite-dimensional case and in classical field theory. They replace the first and
second class constraints of the theory with a set of momenta (Abelianization
of first class constraints) and with pairs of conjugate canonical variables re-
spectively. The variables conjugated to the momenta associated with the first
class constraints are the gauge variables of the theory. The remaining pairs of
canonical variables in the new basis are Dirac’s observables. These canonical
transformations are at the basis of the definition of the Faddeev-Popov measure
for the path integral and trivialize the BRST construction (however, since they
are generically nonlocal, we go outside local field theory). See Refs.[5,6].

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 203−226, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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By putting equal to zero the gauge variables, we get generalized global
Coulomb gauges, in which the physics is described only by physical degrees of
freedom. See the quoted reviews for a list of the models in Minkowski spacetime
which have been treated in this way. They include: i) relativistic particle mechan-
ics (see Refs.[7–11]); ii) the open and closed Nambu string [12]; iii) Yang-Mills
theory with Grassmann-valued fermion fields in the case of a trivial principal
bundle[13] with special weighted Sobolev spaces [14] in which the Gribov am-
biguity is absent; iv) the Abelian and non-Abelian Higgs models [15]; v) the
standard SU(3)xSU(2)xU(1) model of elementary particles [16].

However, in these generalized Coulomb gauges there is a breaking of manifest
Lorentz covariance. Therefore, the next step has been to understand how we can
covariantize these results in Minkowski spacetime by taking into account that
the global Poincaré symmetry induces a stratification of the configurations of
the ststem: they are divided in strata corresponding to the various Poincaré
orbits and each stratum has a different geometry induced by the corresponding
little group. To adapt the description to this geometry, for each stratum we
must do a canonical transformation from the original variables to a new set
consisting of center-of-mass variables xµ, pµ and of variables relative to the
center of mass. Let us consider the stratum p2 > 0. By using the standardWigner

boost Lµν (p,
◦
p) (pµ = Lµν (p,

◦
p)

◦
p
ν
,
◦
p
µ
= η

√
p2(1;0), η = sign po), one boosts the

relative variables at rest. The new variables are still canonical and the base is
completed by pµ and by a new center-of-mass coordinate x̃µ, differing from xµ

for spin terms. The variable x̃µ has complicated covariance properties; instead
the new relative variables are either Poincare’ scalars or Wigner spin-1 vectors,
transforming under the group O(3)(p) of the Wigner rotations induced by the
Lorentz transformations. A final canonical transformation[17], leaving fixed the
relative variables, sends the center-of-mass coordinates x̃µ, pµ in the new set
p · x̃/η

√
p2 = p · x/η

√
p2 (the time in the rest frame), η

√
p2 (the total mass),

k = p/η
√
p2 (the spatial components of the 4-velocity kµ = pµ/η

√
p2, k2 = 1),

z = η
√
p2(x̃−x̃op/po). z is a noncovariant center-of-mass canonical 3-coordinate

multiplied by the total mass: it is the classical analog of the Newton-Wigner
position operator (like it, z is covariant only under the little group O(3)(p) of
the timelike Poincaré orbits).

The nature of the relative variables depends on the system. The first class
constraints, once rewritten in terms of the new variables, can be manipulated
to find suitable global and Lorentz scalar Abelianizations. Usually there is a
combination of the constraints which determines η

√
p2, i.e. the mass spectrum,

so that the time in the rest frame p · x/η
√
p2 is the conjugated Lorentz scalar

gauge variable. The other constraints eliminate some of the relative variables
(in particular the relative energies for systems of interacting relativistic particles
and the string): their conjugated coordinates (the relative times) are the other
gauge variables: they are identified with a possible set of time parameters. The
Dirac observables (apart from the center-of-mass ones k and z) have to be ex-
tracted from the remaining relative variables and the construction shows that
they will be either Poincare’ scalars or Wigner covariant objects. In this way in
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each stratum preferred global Shanmugadhasan canonical transformations are
identified, when no other kind of obstruction to globality is present inside the
various strata.

Then, following Dirac[1] we must reformulate classical field theory on space-
like hypersurfaces foliating Minkowski spacetime M4 [the foliation is defined by
an embedding R × Σ → M4, (τ,σ) �→ z(µ)(τ,σ) ∈ Στ , with Σ an abstract
3-surface diffeomorphic to R3, with Στ its copy embedded in M4 labelled by
the value τ (the Minkowski flat indices are (µ); the scalar “time” parameter
τ labels the leaves of the foliation, σ are curvilinear coordinates on Στ and
σA = (τ,σ) are Στ -adapted holonomic coordinates for M4); this is the classi-
cal basis of Tomonaga-Schwinger quantum field theory]. In this way one gets
a parametrized field theory with a covariant 3+1 splitting of Minkowski space-
time and already in a form suited to the transition to general relativity in its
ADM canonical formulation (see also Ref.[18], where a theoretical study of this
problem is done in curved spacetimes). The price is that one has to add as new
independent configuration variables the embedding coordinates z(µ)(τ,σ) of the
points of the spacelike hypersurface Στ [the only ones carrying Lorentz indices]
and then to define the fields on Στ so that they know the hypersurface Στ of τ -
simultaneity [for a Klein-Gordon field φ(x), this new field is φ̃(τ,σ) = φ(z(τ,σ)):
it contains the nonlocal information about the embedding]. Then one rewrites
the Lagrangian of the given isolated system in the form required by the coupling
to an external gravitational field, makes the previous 3+1 splitting of Minkowski
spacetime and interpretes all the fields of the system as the new fields on Στ

(they are Lorentz scalars, having only surface indices). Instead of considering
the 4-metric as describing a gravitational field (and therefore as an independent
field as it is done in metric gravity, where one adds the Hilbert action to the
action for the matter fields), here one replaces the 4-metric with the the induced

metric gAB[z] = z
(µ)
A η(µ)(ν)z

(ν)
B on Στ [a functional of z(µ); z

(µ)
A = ∂z(µ)/∂σA

are flat tetrad fields on Minkowski spacetime with the z
(µ)
r ’s tangent to Στ ] and

considers the embedding coordinates z(µ)(τ,σ) as independent fields [this is not
possible in metric gravity, because in curved spacetimes zµA �= ∂zµ/∂σA are not
tetrad fields so that holonomic coordinates zµ(τ,σ) do not exist]. From this La-
grangian, besides a Lorentz-scalar form of the constraints of the given system,
we get four extra primary first class constraints

H(µ)(τ,σ) = ρ(µ)(τ,σ)− l(µ)(τ,σ)T
ττ
sys(τ,σ)− zr(µ)(τ,σ)T

τr
sys(τ,σ) ≈ 0

[here T ττ
sys(τ,σ), T

τr
sys(τ,σ), are the components of the energy-momentum tensor

in the holonomic coordinate system, corresponding to the energy- and momentum-
density of the isolated system; one has {H(µ)(τ,σ),H(ν)(τ,σ

′
)} = 0] implying

the independence of the description from the choice of the 3+1 splitting, i.e. from
the choice of the foliation with spacelike hypersufaces. The evolution vector is

given by z
(µ)
τ = N[z](flat)l

(µ) + N r
[z](flat)z

(µ)
r , where l(µ)(τ,σ) is the normal to

Στ in z(µ)(τ,σ) and N[z](flat)(τ,σ), N
r
[z](flat)(τ,σ) are the flat lapse and shift

functions defined through the metric like in general relativity: however, now they
are not independent variables but functionals of z(µ)(τ,σ).
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The Dirac Hamiltonian contains the piece
∫
d3σλ(µ)(τ,σ)H(µ)(τ,σ) with

λ(µ)(τ,σ) Dirac multipliers. It is possible to rewrite the integrand in the form
[3grs is the inverse of grs]

λ(µ)(τ,σ)H(µ)(τ,σ) = [(λ(µ)l
(µ))(l(ν)H(ν))− (λ(µ)z

(µ)
r )(3grszs(ν)H(ν))](τ,σ)

def
= N(flat)(τ,σ)(l(µ)H(µ))(τ,σ)−N(flat)r(τ,σ)(

3grszs(ν)H(ν))(τ,σ)

with the (nonholonomic form of the) constraints

(l(µ)H(µ))(τ,σ) ≈ 0, (3grszs(µ)H(µ))(τ,σ) ≈ 0,

satisfying the universal Dirac algebra of the ADM constraints. In this way we
have defined new flat lapse and shift functions

N(flat)(τ,σ) = λ(µ)(τ,σ)l
(µ)(τ,σ), N(flat)r(τ,σ) = λ(µ)(τ,σ)z

(µ)
r (τ,σ).

which have the same content of the arbitrary Dirac multipliers λ(µ)(τ,σ), namely
they multiply primary first class constraints satisfying the Dirac algebra. In
Minkowski spacetime they are quite distinct from the previous lapse and shift
functions N[z](flat), N[z](flat)r, defined starting from the metric. Instead in gen-
eral relativity the lapse and shift functions defined starting from the 4-metric
are the coefficients (in the canonical part Hc of the Hamiltonian) of secondary
first class constraints satisfying the Dirac algebra.

In special relativity, it is convenient to restrict ourselves to arbitrary space-

like hyperplanes z(µ)(τ,σ) = x
(µ)
s (τ) + b

(µ)
r (τ)σr . Since they are described by

only 10 variables, after this restriction we remain only with 10 first class con-
straints determining the 10 variables conjugate to the hyperplane in terms of
the variables of the system:

H(µ)(τ) = p
(µ)
s − p(µ)

(sys) ≈ 0, H(µ)(ν)(τ) = S
(µ)(ν)
s − S(µ)(ν)

(sys) ≈ 0.

After the restriction to spacelike hyperplanes the previous piece of the Dirac
Hamiltonian is reduced to λ̃(µ)(τ)H(µ)(τ) − 1

2 λ̃
(µ)(ν)(τ)H(µ)(ν)(τ). Since at this

stage we have z
(µ)
r (τ,σ) ≈ b

(µ)
r (τ), so that z

(µ)
τ (τ,σ) ≈ N[z](flat)(τ,σ)l

(µ)(τ,σ)+

Nr
[z](flat)(τ,σ) b

(µ)
r (τ,σ) ≈ ẋ

(µ)
s (τ)+ ḃ

(µ)
r (τ)σr = −λ̃(µ)(τ)−λ̃(µ)(ν)(τ)br(ν)(τ)σ

r ,
it is only now that we get the coincidence of the two definitions of flat lapse and
shift functions (this point was missed in the older treatments of parametrized
Minkowski theories):

N[z](flat)(τ,σ) ≈ N(flat)(τ,σ) = −λ̃(µ)(τ)l
(µ) − l(µ)λ̃(µ)(ν)(τ)b

(ν)
s (τ)σs,

N[z](flat)r(τ,σ) ≈ N(flat)(τ,σ) = −λ̃(µ)(τ)b
(µ)
r (τ)− b(µ)

r (τ)λ̃(µ)(ν)(τ)b
(ν)
s (τ)σs.

The 20 variables for the phase space description of a hyperplane are:

i) x
(µ)
s (τ), p

(µ)
s , parametrizing the origin of the coordinates on the family of space-

like hyperplanes. The four constraints H(µ)(τ) ≈ 0 say that p
(µ)
s is determined
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by the 4-momentum of the isolated system.

ii) b
(µ)
A (τ) (with the b

(µ)
r (τ)’s being three orthogonal spacelike unit vectors gener-

ating the fixed τ -independent timelike unit normal b
(µ)
τ = l(µ) to the hyperplanes)

and S
(µ)(ν)
s = −S(ν)(µ)

s with the orthonormality constraints b
(µ)
A

4η(µ)(ν)b
(ν)
B =

4ηAB [enforced by assuming the Dirac brackets {S(µ)(ν)
s , b

(ρ)
A } = 4η(ρ)(ν)b

(µ)
A −

4η(ρ)(µ)b
(ν)
A , {S(µ)(ν)

s , S
(α)(β)
s } = C

(µ)(ν)(α)(β)
(γ)(δ) S

(γ)(δ)
s with C

(µ)(ν)(α)(β)
(γ)(δ) the struc-

ture constants of the Lorentz algebra]. In these variables there are hidden six
independent pairs of degrees of freedom. The six constraints H(µ)(ν)(τ) ≈ 0 say

that S
(µ)(ν)
s coincides the spin tensor of the isolated system. Then one has that

p
(µ)
s , J

(µ)(ν)
s = x

(µ)
s p

(ν)
s − x(ν)

s p
(µ)
s + S

(µ)(ν)
s , satisfy the algebra of the Poincaré

group.
Let us remark that, for each configuration of an isolated system there is a

privileged family of hyperplanes (the Wigner hyperplanes orthogonal to p
(µ)
s ,

existing when p2s > 0) corresponding to the intrinsic rest-frame of the isolated
system. If we choose these hyperplanes with suitable gauge fixings, we remain
with only the four constraints H(µ)(τ) ≈ 0, which can be rewritten as

√
p2s ≈ [invariantmass of the isolated systemunder investigation] =Msys;

psys = [3−momentumof the isolated system inside theWignerhyperplane] ≈
0.

There is no more a restriction on p
(µ)
s , because u

(µ)
s (ps) = p

(µ)
s /p2s gives the

orientation of the Wigner hyperplanes containing the isolated system with re-
spect to an arbitrary given external observer.

In this special gauge we have b
(µ)
A ≡ L(µ)

A(ps,
◦
ps), S

(µ)(ν)
s ≡ S

(µ)(ν)
system, and

the only remaining canonical variables are the noncovariant Newton-Wigner-

like canonical “external” center-of-mass coordinate x̃
(µ)
s (τ) (living on the Wigner

hyperplanes) and p
(µ)
s . Now 3 degrees of freedom of the isolated system [an “in-

ternal” center-of-mass 3-variable σsys defined inside the Wigner hyperplane and
conjugate to psys] become gauge variables [the natural gauge fixing is σsys ≈ 0,

so that it coincides with the origin x
(µ)
s (τ) = z(µ)(τ,σ = 0) of the Wigner hy-

perplane], while the x̃(µ) is playing the role of a kinematical external center
of mass for the isolated system and may be interpreted as a decoupled ob-
server with his parametrized clock (point particle clock). All the fields living
on the Wigner hyperplane are now either Lorentz scalar or with their 3-indices
transformaing under Wigner rotations (induced by Lorentz transformations in
Minkowski spacetime) as any Wigner spin 1 index.

One obtains in this way a new kind of instant form of the dynamics (see
Ref.[19]), the “Wigner-covariant 1-time rest-frame instant form”[20] with a uni-
versal breaking of Lorentz covariance. It is the special relativistic generalization
of the nonrelativistic separation of the center of mass from the relative motion

[H = P
2

2M + Hrel]. The role of the center of mass is taken by the Wigner hy-

perplane, identified by the point x̃(µ)(τ) and by its normal p
(µ)
s . The invariant
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mass Msys of the system replaces the nonrelativistic Hamiltonian Hrel for the
relative degrees of freedom, after the addition of the gauge-fixing Ts − τ ≈ 0
[identifying the time parameter τ , labelling the leaves of the foliation, with the
Lorentz scalar time of the center of mass in the rest frame, Ts = ps · x̃s/Msys;
Msys generates the evolution in this time].

The determination of σsys may be done with the group theoretical methods
of Ref.[21]: given a realization on the phase space of a given system of the ten
Poincaré generators one can build three 3-position variables only in terms of
them, which in our case of a system on the Wigner hyperplane with psys ≈ 0
are: i) a canonical center of mass (the “internal” center of mass σsys); ii) a non-

canonical Möller center of energy σ
(E)
sys ; iii) a noncanonical Fokker-Pryce center

of inertia σ
(FP )
sys . Due to psys ≈ 0, we have σsys ≈ σ

(E)
sys ≈ σ

(FP )
sys . By adding the

gauge fixings σsys ≈ 0 one can show that the origin x
(µ)
s (τ) becomes simultane-

ously the Dixon center of mass of an extended object and both the Pirani and
Tulczyjew centroids (see Ref. [22] for the application of these methods to find
the center of mass of a configuration of the Klein-Gordon field after the prelimi-
nary work of Ref.[23]). With similar methods one can construct three “external”
collective positions (all located on the Wigner hyperplane): i) the “external”

canonical noncovariant center of mass x̃
(µ)
s ; ii) the “external” noncanonical and

noncovariant Möller center of energy R
(µ)
s ; iii) the “external” covariant non-

canonical Fokker-Pryce center of inertia Y
(µ)
s (when there are the gauge fixings

σsys ≈ 0 it also coincides with the origin x
(µ)
s ). It turns out that the Wigner hy-

perplane is the natural setting for the study of the Dixon multipoles of extended
relativistic systems[24] and for defining the canonical relative variables with re-
spect to the center of mass. The Wigner hyperplane with its natural Euclidean
metric structure offers a natural solution to the problem of boost for lattice
gauge theories and realizes explicitly the machian aspect of dynamics that only
relative motions are relevant.

The isolated systems till now analyzed to get their rest-frameWigner-covariant
generalized Coulomb gauges [i.e. the subset of global Shanmugadhasan canonical
bases, which, for each Poincaré stratum, are also adapted to the geometry of the
corresponding Poincaré orbits with their little groups (every stratum requires
an independent canonical reduction); till now only the main stratum with p2

timelike and W2 �= 0 has been investigated] are:
a) The system of N scalar particles with Grassmann electric charges plus

the electromagnetic field [20]. The starting configuration variables are a 3-vector

ηi(τ) for each particle [x
(µ)
i (τ) = z(µ)(τ,ηi(τ))] and the electromagnetic gauge

potentials AA(τ,σ) =
∂z(µ)(τ,�)

∂σA A(µ)(z(τ,σ)), which know the embedding of Στ

intoM4. One has to choose the sign of the energy of each particle, because there
are not mass-shell constraints (like p2i −m2

i ≈ 0) among the constraints of this
formulation, due to the fact that one has only three degrees of freedom for par-
ticle, determining the intersection of a timelike trajectory and of the spacelike
hypersurface Στ . In this way, one gets a description of relativistic particles with
a given sign of the energy with consistent couplings to fields and valid indepen-
dently from the quantum effect of pair production [in the manifestly covariant
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approach, containing all possible branches of the particle mass spectrum, the
classical counterpart of pair production is the intersection of different branches
deformed by the presence of interactions]. The final Dirac’s observables are: i) the
transverse radiation field variables A⊥, E⊥; ii) the particle canonical variables
ηi(τ), κi(τ), dressed with a Coulomb cloud. The physical Hamiltonian contains
the mutual instantaneous Coulomb potentials extracted from field theory and
there is a regularization of the Coulomb self-energies due to the Grassmann
character of the electric charges Qi [Q

2
i = 0]. In Ref.[25] there is the study of

the Lienard-Wiechert potentials and of Abraham-Lorentz-Dirac equations in this
rest-frame Coulomb gauge and also scalar electrodynamics is reformulated in it.
Also the rest-frame 1-time relativistic statistical mechanics has been developed
[20].

b) The system of N scalar particles with Grassmann-valued color charges plus
the color SU(3) Yang-Mills field[26]: it gives the pseudoclassical description of
the relativistic scalar-quark model, deduced from the classical QCD Lagrangian
and with the color field present. With these results one can covariantize the
bosonic part of the standard model given in Ref.[16].

c) The system of N spinning particles of definite energy [(12 , 0) or (0,
1
2 ) repre-

sentation of SL(2,C)] with Grassmann electric charges plus the electromagnetic
field[27] and that of a Grassmann-valued Dirac field plus the electromagnetic
field (the pseudoclassical basis of QED) [28]. In both cases there are geometrical
complications connected with the spacetime description of the path of electric
currents and not only of their spin structure: after their solution the rest-frame
form of the full standard SU(3)× SU(2)× U(1) model can be achieved.

The rest-frame description of the relativistic perfect gas is now under inves-
tigation.

All these new pieces of information will allow, after quantization of this
new consistent relativistic mechanics without the classical problems connected
with pair production, to find the asymptotic states of the covariant Tomonaga-
Schwinger formulation of quantum field theory on spacelike hypersurfaces (to
be obtained by quantizing the fields on Στ ): these states are needed for the
theory of quantum bound states [since Fock states do not constitute a Cauchy
problem for the field equations, because an in (or out) particle can be in the
absolute future of another one due to the tensor product nature of these asymp-
totic states, bound state equations like the Bethe-Salpeter one have spurious
solutions which are excitations in relative energies, the variables conjugate to
relative times]. Moreover, it will be possible to include bound states among the
asymptotic states.

As said in Ref.[25,26], the quantization of these rest-frame models has to
overcome two problems. On the particle side, the complication is the quantization
of the square roots associated with the relativistic kinetic energy terms: in the
free case this has been done in Ref.[29]. On the field side (all physical Hamiltonian
are nonlocal and, with the exception of the Abelian case, nonpolynomial, but
quadratic in the momenta), the obstacle is the absence (notwithstanding there is
no no-go theorem) of a complete regularization and renormalization procedure
of electrodynamics (to start with) in the Coulomb gauge.
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However, as shown in Refs.[20,13], the rest-frame instant form of dynam-
ics automatically gives a physical ultraviolet cutoff in the spirit of Dirac and
Yukawa: it is the Möller radius[30] ρ =

√
−W 2/p2 = |S|/

√
p2 (W 2 = −p2S2 is

the Pauli-Lubanski Casimir when p2 > 0), namely the classical intrinsic radius of
the worldtube, around the covariant noncanonical Fokker-Pryce center of inertia
Y (µ), inside which the noncovariance of the canonical center of mass x̃µ is concen-
trated. At the quantum level ρ becomes the Compton wavelength of the isolated
system multiplied its spin eigenvalue

√
s(s+ 1) , ρ �→ ρ̂ =

√
s(s+ 1)~/M =√

s(s+ 1)λM with M =
√
p2 the invariant mass and λM = ~/M its Compton

wavelength. Therefore, the criticism to classical relativistic physics, based on
quantum pair production, concerns the testing of distances where, due to the
Lorentz signature of spacetime, one has intrinsic classical covariance problems: it
is impossible to localize the canonical center of mass x̃µ adapted to the first class
constraints of the system (also named Pryce center of mass and having the same
covariance of the Newton-Wigner position operator) in a frame independent way.
Let us remember [20] that ρ is also a remnant in flat Minkowski spacetime of
the energy conditions of general relativity: since the Möller noncanonical, non-
covariant center of energy R(µ)has its noncovariance localized inside the same
worldtube with radius ρ (it was discovered in this way) [30], it turns out that for
an extended relativistic system with the material radius smaller of its intrinsic
radius ρ one has: i) its peripheral rotation velocity can exceed the velocity of
light; ii) its classical energy density cannot be positive definite everywhere in
every frame.

Now, the real relevant point is that this ultraviolet cutoff determined by ρ
exists also in Einstein’s general relativity (which is not power counting renor-
malizable) in the case of asymptotically flat spacetimes, taking into account the
Poincaré Casimirs of its asymptotic ADM Poincaré charges (when supertransla-
tions are eliminated with suitable boundary conditions). See Ref.[3,4] for other
properties of ρ.

In conclusion, the best set of canonical coordinates adapted to the con-
straints and to the geometry of Poincaré orbits in Minkowski spacetime and
naturally predisposed to the coupling to canonical tetrad gravity is emerging for
the electromagnetic, weak and strong interactions with matter described either
by fermion fields or by relativistic particles with a definite sign of the energy.

Tetrad gravity is the formulation of general relativity natural for the coupling
to the fermion fields of the standard model. However, we need a formulation of
it, which allows to solve its constraints for doing the canonical reduction and
to solve the deparametrization problem of general relativity (how to recover the
rest-frame instant form when the Newton constant is put equal to zero, G=0).
One also needs a formulation in which some notion of elementary particle ex-
ists so to recover Wigner’s definition based on the irreducible representations of
the Poincaré group in Minkowski spacetime with the further enrichment of the
known good quantum numbers for their classification. Moreover, one needs some
way out from the “problem of time”[31–33], since neither any consistent way to
quantize time (is it a necessity?), and generically any timelike variable, nor a
control on the associated problem of the relative times of a system of relativistic
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particles are known. Finally, one has to find a solution to the more basic problem
of how to identify physically spacetime points in Einstein’s formulation of gen-
eral relativity, where general covariance deprives the mathematical points of the
underlying 4-manifold of any physical reality [34,35], while, on the experimental
side (space physics, gravitational waves detectors) , we are employing a theory
of measurements of proper times and spacelike lengths which presuppones the
individuation of points. This problem will appear also in the nowaday most pop-
ular program of unification of all the interactions in a supersymmetric way, i.e.
in superstring theory and in its searched M-theory extension, when someone will
be able to reformulate it in a background independent way.

Since neither a complete reduction of gravity with an identification of the
physical canonical degrees of freedom of the gravitational field nor a detailed
study of its Hamiltonian group of gauge transformations (whose infinitesimal
generators are the first class constraints) has ever been pushed till the end in an
explicit way, a new formulation of tetrad gravity [36–39] was developed.

To implement this program we shall restrict ourselves to the simplest class of
spacetimes [time-oriented pseudo-Riemannian or Lorentzian 4-manifold (M4, 4g)
with signature ε (+−−−) (ε = ±1 according to either particle physics or general
relativity convention) and with a choice of time orientation], assumed to be:

i) Globally hyperbolic 4-manifolds, i.e. topologically they are M4 = R ×Σ,
so to have a well posed Cauchy problem [with Σ the abstract model of Cauchy
surface]: they admit regular foliations (3+1 splittings) with orientable, complete,
non-intersecting spacelike 3-manifolds Στ [τ :M4 → R, zµ �→ τ(zµ)].

ii) Asymptotically flat at spatial infinity, so to have the possibility to define
asymptotic Poincaré charges [40–42]: they allow the definition of a Mωller radius
also in general relativity and are a bridge towards a future soldering with the
theory of elementary particles in Minkowski spacetime defined as irreducible
representation of its kinematical, globally implemented Poincaré group according
to Wigner. This excludes Einstein-Wheeler closed universes without boundaries
(no asymptotic Poincaré charges), which were introduced to eliminate boundary
conditions at spatial infinity to make the theory as machian as possible.

iii) Admitting a spinor (or spin) structure[43] for the coupling to fermion
fields. Since we consider noncompact space- and time-orientable spacetimes,
spinors can be defined if and only if they are “parallelizable” [44], like in our case.
This implies that the orthonormal frame principal SO(3)-bundle over Στ (whose
connections are the spin connections determined by the cotriads) is trivial.

iv) The noncompact parallelizable simultaneity 3-manifolds (the Cauchy sur-
faces) Στ are assumed to be topologically trivial, geodesically complete and, fi-
nally, diffeomorphic to R3. These 3-manifolds have the same manifold structure
as Euclidean spaces: a) the geodesic exponential map Expp : TpΣτ → Στ is a
diffeomorphism ; b) the sectional curvature is less or equal zero everywhere; c)
they have no “conjugate locus” [i.e. there are no pairs of conjugate Jacobi points
(intersection points of distinct geodesics through them) on any geodesic] and no
“cut locus” [i.e. no closed geodesics through any point].

v) Like in Yang-Mills case [13], the 3-spin-connection on the orthogonal
frame SO(3)-bundle (and therefore cotriads) will have to be restricted to suited
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weighted Sobolev spaces to avoid Gribov ambiguities [13,45]. In turn, this implies
the absence of isometries of the noncompact Riemannian 3-manifold (Στ ,

3g) [see
for instance the review paper in Ref. [46]].

Diffeomorphisms on Στ (Diff Στ ) are interpreted in the passive way, fol-
lowing Ref.[47], in accord with the Hamiltonian point of view that infinitesimal
diffeomorphisms are generated by taking the Poisson bracket with the 1st class
supermomentum constraints [passive diffeomorphisms are also named ‘pseudod-
iffeomorphisms’].

By using Στ -adapted holonomic coordinates for M4, one has found a new
parametrization of arbitrary tetrads and cotetrads on M4 in terms of cotriads
on Στ [3e(a)r(τ,σ)], of lapse [N(τ,σ)] and shift [N(a)(τ,σ) = {3e(a)rN

r}(τ,σ)]
functions and of 3 parameters [ϕ(a)(τ,σ)] parametrizing point-dependent Wigner
boosts for timelike Poincaré orbits. Putting these variables in the ADM action
for metric gravity [40] (with the 3-metric on Στ expressed in terms of cotriads:
3grs = 3e(a)r

3e(a)s with positive signature), one gets a new action depending
only on lapse, shifts and cotriads, but not on the boost parameters (therefore,
there is no need to use Schwinger’s time gauge). There are 10 primary and 4
secondary first class constraints and a weakly vanishing canonical Hamiltonian
containing the secondary constraints like in ADM metric gravity [40]. Besides the
3 constraints associated with the vanishing Lorentz boost momenta (Abelian-
ization of boosts), there are 4 constraints saying that the momenta associated
with lapse and shifts vanish, 3 constraints describing rotations, 3 constraints
generating space-diffeomorphisms on the cotriads induced by those (Diff Στ )
on Στ (a linear combination of supermomentum constraints and of the rota-
tion ones; a different combination of these constraints generates SO(3) Gauss
law constraints for the momenta 3π̃r(a) conjugated to cotriads with the covariant

derivative built with the spin connection) and one superhamiltonian constraint.
The six constraints connected with Lorentz boosts and rotations replace the
constraints satisfying the Lorentz algebra in the older formulations. The boost
parameters ϕ(a)(τ,σ) and the three angles α(a)(τ,σ) hidden in the cotriads are
the extra variables of tetrad gravity with respect to metric gravity: they allow
a Hamiltonian description of the congruences of timelike accelerated observers
used in the formulation of gravitomagnetism[48].

It turns out that with the technology developed for Yang-Mills theory, one
can Abelianize the 3 rotation constraints and then also the space-diffeomorphism
constraints so that we can arrive at a total of 13 Abelianized first class con-
straints. In the Abelianization of the rotation constraints one needs the Green
function of the 3-dimensional covariant derivative containing the spin connec-
tion, well defined only if there is no Gribov ambiguity in the SO(3)-frame bundle
and no isometry of the Riemannian 3-manifold (Στ ,

3g). The Green function is
similar to the Yang-Mills one for a principal SO(3)-bundle [13], but, instead
of the Dirac distribution for the Green function of the flat divergence, it con-
tains the Synge-DeWitt bitensor [49] defining the tangent in one endpoint of the
geodesic arc connecting two points (which reduces to the Dirac distribution only
locally in normal coordinates). Moreover, the definition of the Green function
now requires the geodesic exponential map.
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In the resulting quasi-Shanmugadhasan canonical basis, the original cotriad
can be expressed in closed form in terms of 3 rotation angles, 3 diffeomorphism-
parameters and a reduced cotriad depending only on 3 independent variables
(they are Dirac’s observables with respect to 13 of the 14 first class constraints)
and with their conjugate momenta, still subject to the reduced form of the
superhamiltonian constrain: this is the phase space over the superspace of 3-
geometries[50].

Till now no coordinate condition[51] has been imposed. It turns out that these
conditions are hidden in the choice of how to parametrize the reduced cotriads
in terms of three independent functions. The simplest parametrization (the only
one studied till now) corresponds to choose a system of global 3-orthogonal
coordinates on Στ , in which the 3-metric is diagonal. With a further canonical
transformation on the reduced cotriads and conjugate momenta, one arrives at
a canonical basis containing the conformal factor φ(τ,σ) = eq(τ,�)/2 of the 3-
geometry and its conjugate momentum ρ(τ,σ) plus two other pairs of conjugate
canonical variables rā(τ,σ), πā(τ,σ), ā = 1, 2. The reduced superhamiltonian
constraint, expressed in terms of these variables, turns out to be an integro-
differential equation for the conformal factor (reduced Lichnerowicz equation)
whose conjugate momentum is, therefore, the last gauge variable. If we replace
the gauge fixing of the Lichnerowicz[52] and York[53] approach [namely the
vanishing of the trace of the extrinsic curvature of Στ ,

3K(τ,σ) ≈ 0, also named
the internal extrinsic York time] with the natural one ρ(τ,σ) ≈ 0 and we go
to Dirac brackets, we find that rā(τ,σ), πā(τ,σ) are the canonical basis for the
physical degrees of freedom or Dirac’s observables of the gravitational field in the
3-orthogonal gauges. Let us remark that the functional form of the non-tensorial
objects rā, πā, depends on the chosen coordinate condition.

The next step is to find the physical Hamiltonian for them and to solve the
deparametrization problem. If we wish to arrive at the soldering of tetrad grav-
ity with matter and parametrized Minkowski formulation for the same matter,
we must require that the lapse and shift functions of tetrad gravity must agree
asymptotically with the flat lapse and shift functions, which, however, are un-
ambigously defined only on Minkowski spacelike hyperplanes as we have seen.
In metric ADM gravity the canonical Hamiltonian is H(c)ADM =

∫
d3σ[NH̃ +

NrH̃r](τ,σ) ≈ 0, where H̃(τ,σ) ≈ 0 and H̃r(τ,σ) ≈ 0 are the superhamiltonian
and supermomentum constraints. It is differentiable and finite only for suitable
N(τ,σ) = n(τ,σ)→|�|→∞ 0, Nr(τ,σ) = nr(τ,σ)→|�|→∞ 0 defined by Beig and

Ó’Murchadha[41] in suitable asymptotic coordinate systems. For more general
lapse and shift functions one must add a surface term [50] to H(c)ADM , which
contains the “strong” Poincaré charges [40] PA

ADM , JABADM [they are conserved
and gauge invariant surface integrals]. To have well defined asymptotic Poincaré
charges at spatial infinity[40,41] one needs: i) the selection of a class of coor-
dinates systems for Στ asymptotic to flat coordinates; ii) the choice of a class
of Hamiltonian boundary conditions for the fields in these coordinate systems
[all the fields must belong to some functional space of the type of the weighted
Sobolev spaces]; iii) a definition of the Hamiltonian group G of gauge transforma-
tions (and in particular of proper gauge transformations) with a well defined limit
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at spatial infinity so to respect i) and ii). The scheme is the same needed to de-
fine the non-Abelian charges in Yang-Mills theory[13]. The delicate point is to be
able to exclude supertranslations[43], because the presence of these extra asymp-
totic charges leads to the replacement of the asymptotic Poincaré group with the
infinite-dimensional spi group[42] of asymptotic symmetries, which does not al-
low the definition of the Poincaré spin due to the absence of the Pauli-Lubanski
Casimir. This can be done with suitable boundary conditions (in particular all
the fields and gauge transformations must have direction independent limits at
spatial infinity) respecting the “parity conditions” of Beig and Ó’Murchadha[41].

Let us then remark that in Ref.[54] and in the book in Ref.[1] (see also
Ref.[41]), Dirac introduced asymptotic Minkowski rectangular coordinates

z
(µ)
(∞)(τ,σ) = x

(µ)
(∞)(τ) + b

(µ)
(∞) r(τ)σ

r

in M4 at spatial infinity S∞ = ∪τS
2
τ,∞ For each value of τ , the coordinates

x
(µ)
(∞)(τ) labels a point, near spatial infinity chosen as origin ofΣτ . On it there is a

flat tetrad b
(µ)
(∞)A(τ) = { l(µ)

(∞) = b
(µ)
(∞) τ = ε(µ)

(α)(β)(γ)b
(α)
(∞) 1(τ)b

(β)
(∞) 2(τ)b

(γ)
(∞) 3(τ);

b
(µ)
(∞) r(τ) }, with l

(µ)
(∞) τ -independent. There will be transformation coefficients

bµA(τ,σ) from the holonomic adapted coordinates σA = (τ, σr) to coordinates
xµ = zµ(σA) in an atlas of M4, such that in a chart at spatial infinity one

has zµ(τ,σ) = δµ(µ)z
(µ)(τ,σ) and bµA(τ,σ) = δµ(µ)b

(µ)
(∞)A(τ) [for r → ∞ one has

4gµν → δ
(µ)
µ δ

(ν)
ν

4η(µ)(ν) and 4gAB = bµA
4gµνb

ν
B → b

(µ)
(∞)A

4η(µ)(ν)b
(ν)
(∞)B = 4ηAB

].
Dirac[54] and, then, Regge and Teitelboim[41] proposed that the asymptotic

Minkowski rectangular coordinates z
(µ)
(∞)(τ,σ) = x

(µ)
(∞)(τ) + b

(µ)
(∞)r(τ)σ

r should

define 10 new independent degrees of freedom at the spatial boundary S∞, as
it happens for Minkowski parametrized theories[20] when restricted to spacelike

hyperplanes [defined by z(µ)(τ,σ) ≈ x
(µ)
s (τ) + b

(µ)
r (τ)σr ]; then, 10 conjugate

momenta should exist. These 20 extra variables of the Dirac proposal can be

put in the form: x
(µ)
(∞)(τ), p

(µ)
(∞), b

(µ)
(∞)A(τ) [with b

(µ)
(∞)τ = l

(µ)
(∞) τ -independent],

S
(µ)(ν)
(∞) , with Dirac brackets implying the orthonormality constraints

b
(µ)
(∞)A

4η(µ)(ν)b
(ν)
(∞)B = 4ηAB

[so that p
(µ)
(∞) and J

(µ)(ν)
(∞) = x

(µ)
(∞)p

(ν)
(∞) − x

(ν)
(∞)p

(µ)
(∞) +S

(µ)(ν)
(∞) satisfy a Poincaré al-

gebra]. In analogy with Minkowski parametrized theories restricted to spacelike
hyperplanes, one expects to have 10 extra first class constraints of the type

p
(µ)
(∞) − P

(µ)
ADM ≈ 0, S

(µ)(ν)
(∞) − S(µ)(ν)

ADM ≈ 0

with P
(µ)
ADM , S

(µ)(ν)
ADM related to the ADM Poincaré charges PA

ADM , JABADM . The

origin x
(µ)
(∞) is going to play the role of a decoupled observer with his parametrized

clock.
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Let us remark that if we replace p
(µ)
(∞) and S

(µ)(ν)
(∞) , whose Poisson alge-

bra is the direct sum of an Abelian algebra of translations and of a Lorentz
algebra, with the new variables (with holonomic indices with respect to Στ )

pA(∞) = bA(∞)(µ)p
(µ)
(∞), J

AB
(∞) = bA(∞)(µ)b

B
(∞)(ν)S

(µ)(ν)
(∞) [�= bA(∞)(µ)b

B
(∞)(ν)J

(µ)(ν)
(∞) ], the

Poisson brackets for p
(µ)
(∞), b

(µ)
(∞)A, S

(µ)(ν)
(∞) imply that pA(∞), J

AB
(∞) satisfy a Poincaré

algebra. This implies that the Poincaré generators PA
ADM , JABADM define in the

asymptotic Dirac rectangular coordinates a momentum P
(µ)
ADM and only an ADM

spin tensor S
(µ)(ν)
ADM [to define an angular momentum tensor J

(µ)(ν)
ADM one should

find a “center of mass of the gravitational field” X
(µ)
ADM [3g, 3Π̃] (see Ref.[23] for

the Klein-Gordon case) conjugate to P
(µ)
ADM , so that J

(µ)(ν)
ADM = X

(µ)
ADMP

(ν)
ADM −

X
(ν)
ADMP

(µ)
ADM + S

(µ)(ν)
ADM ].

The following splitting of the lapse and shift functions and the following
set of boundary conditions fulfill all the previous requirements [soldering with
the lapse and shift functions on Minkowski hyperplanes; absence of supertransla-
tions [strictly speaking one gets P r

ADM = 0 due to the parity conditions; r = |σ|]

3grs(τ,σ)→r→∞ (1 + M
r )δrs +

3hrs(τ,σ) = (1 + M
r )δrs + o4(r

−3/2),
3Π̃rs(τ,σ)→r→∞ 3krs(τ,σ) = o3(r

−5/2),

N(τ,σ) = N(as)(τ,σ) + n(τ,σ), n(τ,σ) = O(r−(3+ε)),
Nr(τ,σ) = N(as)r(τ,σ) + nr(τ,σ), nr(τ,σ) = O(r−ε),

N(as)A(τ,σ)
def
= (N(as) ; N(as)r )(τ,σ) = −λ̃A(τ) − 1

2 λ̃As(τ)σ
s,

⇒ 3e(a)r(τ,σ) = (1 + M
2r )δ(a)r + o4(r

−3/2),

with3hrs(τ,−σ) = 3hrs(τ,σ),
3krs(τ,−σ) = −3krs(τ,σ); here 3Π̃rs(τ,σ) is

the momentum conjugate to the 3-metric 3grs(τ,σ) in ADM metric gravity.
These boundary conditions identify the class of spacetimes of Christodoulou

and Klainermann[55] (they are near to Minkowski spacetime in a norm sense,
contain gravitational radiation but evade the singularity theorems, because they
do not satisfy the hypothesis of conformal completion to get the possibility to put
control on the large time development of the solutions of Einstein’s equations).
These spacetimes also satisfy the rest-frame condition Pr

ADM = 0 (this requires

λ̃Ar(τ) = 0 like for Wigner hyperplanes in parametrized Minkowski theories)
and have vanishing shift functions (but non trivial lapse function).

After the addition of the surface term, the resulting canonical and Dirac
Hamiltonians of ADM metric gravity are

H(c)ADM =
∫
d3σ[(N(as) + n)H̃+ (N(as)r + nr)

3H̃r](τ,σ) �→
�→ H

′
(c)ADM =

∫
d3σ[(N(as) + n)H̃ + (N(as)r + nr)

3H̃r](τ,σ)+

+λ̃A(τ)P
A
ADM + λ̃AB(τ)J

AB
ADM =

=
∫
d3σ[nH̃ + nr

3H̃r](τ,σ) + λ̃A(τ)P̂
A
ADM + λ̃AB(τ)Ĵ

AB
ADM ≈

≈ λ̃A(τ)P̂
A
ADM + λ̃AB(τ)Ĵ

AB
ADM ,
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with the “weak conserved improper charges” P̂A
ADM , ĴABADM [they are volume

integrals differing from the weak charges by terms proportional to integrals of
the constraints]. The previous splitting implies to replace the variables N(τ,σ),
Nr(τ,σ) with the ones λ̃A(τ), λ̃AB(τ) = −λ̃BA(τ), n(τ,σ), nr(τ,σ) [with con-
jugate momenta π̃A(τ), π̃AB(τ) = −π̃BA(τ), π̃n(τ,σ), π̃r

n
(τ,σ)] in the ADM

theory.
With these assumptions one has the following form of the line element (also

its form in tetrad gravity is given)

ds2 = ε([N(as) + n]
2 − [N(as)r + nr]

3er(a)
3es(a)[N(as)s + ns])(dτ)

2−
−2ε[N(as)r + nr]dτdσ

r − ε 3e(a)r
3e(a)sdσ

rdσs.

The final suggestion of Dirac is to modify ADM metric gravity in the follow-
ing way:
i) add the 10 new primary constraints pA(∞) − P̂A

ADM ≈ 0, JAB(∞) − ĴABADM ≈ 0,

where pA(∞) = bA(∞)(µ)p
(µ)
(∞), J

AB
(∞) = bA(∞)(µ)b

B
(∞)(ν)S

(µ)(ν)
(∞) ;

ii) consider λ̃A(τ), λ̃AB(τ), as Dirac multipliers for these 10 new primary con-
straints, and not as configurational (arbitrary gauge) variables coming from the
lapse and shift functions [so that there are no conjugate (vanishing) momenta
π̃A(τ), π̃AB(τ)], in the assumed Dirac Hamiltonian [it is finite and differentiable]

H(D)ADM =
∫
d3σ[nH̃ + nrH̃r + λnπ̃

n + λnr π̃
r
n
](τ,σ)−

−λ̃A(τ)[pA(∞) − P̂A
ADM ]− λ̃AB(τ)[JAB(∞) − ĴABADM ] ≈ 0,

The reduced phase space is still the ADM one: on the ADM variables there
are only the secondary first class constraints H̃(τ,σ) ≈ 0, H̃r(τ,σ) ≈ 0 [gener-
ators of proper gauge transformations], because the other first class constraints
pA(∞) − P̂A

ADM ≈ 0, JAB(∞) − ĴABADM ≈ 0 do not generate improper gauge transfor-
mations but eliminate 10 of the extra 20 variables.

In this modified ADM metric gravity, one has restricted the 3+1 splittings
of M4 to foliations whose leaves Στ tend to Minkowski spacelike hyperplanes
asymptotically at spatial infinity in a direction independent way. Therefore, these

Σ
′
τ should be determined by the 10 degrees of freedom x

(µ)
(∞)(τ), b

(µ)
(∞)A(τ), like

it happens for flat spacelike hyperplanes: this means that it must be possi-

ble to define a “parallel transport” of the asymptotic tetrads b
(µ)
(∞)A(τ) to get

well defined tetrads in each point of Σ
′
τ . While it is not yet clear whether

this can be done for λ̃AB(τ) �= 0, there is a solution for λ̃AB(τ) = 0. This
case corresponds to go to the Wigner-like hypersurfaces [the analogue of the

Minkowski Wigner hyperplanes with the asymptotic normal l
(µ)
(∞) = l

(µ)
(∞)Σ par-

allel to P̂
(µ)
ADM ]. Following the same procedure defined for Minkowski spacetime,

one gets S̄rs(∞) ≡ ĴrsADM [see Ref.[20] for the definition of S̄AB(∞)], λ̃AB(τ) = 0 and

−λ̃A(τ)[pA(∞) − P̂A
ADM ] = −λ̃τ (τ)[ε(∞) − P̂ τ

ADM ] + λ̃r(τ)P̂
r
ADM [ε(∞) =

√
p2(∞)],
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so that the final form of these four surviving constraints is (Pr
ADM = 0 implies

P̂ r
ADM ≈ 0; MADM =

√
P̂ 2
ADM ≈ P̂ τ

ADM is the ADM mass of the universe)

ε(∞) − P̂ τ
ADM ≈ 0, P̂ r

ADM ≈ 0.

On this subclass of foliations [whose leaves Σ
(WSW )
τ will be called Wigner-

Sen-Witten hypersurfaces; they define the intrinsic asymptotic rest frame of
the gravitational field] one can introduce a parallel transport by using the in-
terpretation of Ref.[56] of the Witten spinorial method of demonstrating the
positivity of the ADM energy [57]. Let us consider the Sen-Witten connection

[58,57] restricted to Σ
(WSW )
τ (it depends on the trace of the extrinsic curvature

of Σ
(WSW )
τ ) and the spinorial Sen-Witten equation associated with it. As shown

in Ref.[59], this spinorial equation can be rephrased as an equation whose solu-
tion determines (in a surface dependent dynamical way) a tetrad in each point

of Σ
(WSW )
τ once it is given at spatial infinity (again this requires a direction

independent limit). Therefore, at spatial infinity there is a privileged congruence
of timelike observers, which replaces the concept of “fixed stars” in the study of
the precessional effects of gravitomagnetism on gyroscopes and whose connection
with the definition of post-Newtonian coordinates has still to be explored.

On the Wigner-Sen-Witten hypersurfaces the spatial indices have become
spin-1 Wigner indices [they transform with Wigner rotations under asymptotic
Lorentz transformations]. As said for parametrized theories in Minkowski space-
time, in this special gauge 3 degrees of freedom of the gravitational field [ an
internal 3-center-of-mass variable σADM [3g, 3Π̃ ] inside the Wigner-Sen-Witten

hypersurface] become gauge variables, while x̃
(µ)
(∞) [the canonical non covariant

variable replacing x
(µ)
(∞)] becomes a decoupled observer with his “point particle

clock” [31,32] near spatial infinity. Since the positivity theorems for the ADM
energy imply that one has only timelike or lightlike orbits of the asymptotic
Poincaré group, the restriction to universes with timelike ADM 4-momentum

allows to define the Möller radius ρAMD =
√
−Ŵ 2

ADM/P̂
2
ADM from the asymp-

totic Poincaré Casimirs P̂ 2
ADM , Ŵ 2

ADM .

By going from x̃
(µ)
(∞), p

(µ)
(∞), to the canonical basis T(∞) = p(∞)(µ)x̃

(µ)
(∞)/ε(∞) =

p(∞)(µ)x
(µ)
(∞)/ε(∞), ε(∞), z

(i)
(∞) = ε(∞)(x̃

(i)
(∞)−p

(i)
(∞)x̃

(o)
(∞)/p

(o)
(∞)), k

(i)
(∞) = p

(i)
(∞)/ε(∞) =

u(i)(p
(ρ)
(∞)), like in the flat case one finds that the final reduction requires the

gauge-fixings T(∞) − τ ≈ 0 and σrADM ≈ 0, where σr = σrADM is a variable
representing the “internal center of mass” of the 3-metric of the slice Στ of
the asymptotically flat spacetime M4. Since {T(∞), ε(∞)} = −ε, with the gauge

fixing T(∞) − τ ≈ 0 one gets λ̃τ (τ) ≈ ε, and the final Dirac Hamiltonian is

HD = MADM + λ̃r(τ)P̂
r
ADM with MADM the natural physical Hamiltonian to

reintroduce an evolution in the “mathematical” T(∞) ≡ τ : namely in the rest-

frame time identified with the parameter τ labelling the leaves Σ
(WSW )
τ of the

foliation of M4. Physical times (atomic clocks, ephemeridis time...) must be put
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in a local 1-1 correspondence with this “mathematical” time. This point of view
excludes any Wheeler-DeWitt interpretation of an internal time (like the ex-
trinsic York one or the WKB times), which is used in closed universes of the
Einstein-Wheeler type.

All this construction holds also in our formulation of tetrad gravity (since it
uses the ADM action) and in its canonically reduced form in the 3-orthogonal
gauges. The final physical Hamiltonian of tetrad gravity for the physical gravita-
tional field is the reduced volume form of the ADM energy P̂ τ

ADM [rā.πā, φ(rā, πā)]
with the conformal factor φ solution of the reduced Lichnerowicz equation in the
3-orthogonal gauge with ρ(τ,σ) ≈ 0. The Hamilton-Dirac equations generated
by this Hamiltonian for rā, πā generate the pair of second order equations in
normal form for rā hidden in the Einstein equations in this particular gauge.

Let us compare the standard generally covariant formulation of gravity based
on the Hilbert action with its invariance underDiff M4 with the ADM Hamilto-
nian formulation. Regarding the 10 Einstein equations of the standard approach,
the Bianchi identities imply that four equations are linearly dependent on the
other six ones and their gradients. Moreover, the four combinations of Einstein’s
equations projectable to phase space (where they become the secondary first class
superhamitonian and supermomentum constraints of canonical metric gravity)
are independent from the accelerations being restrictions on the Cauchy data.
As a consequence the Einstein equations have solutions, in which the ten com-
ponents 4gµν of the 4-metric depend on only two truly dynamical degrees of
freedom (defining the physical gravitational field) and on eight undetermined
degrees of freedom. This transition from the ten components 4gµν of the tensor
4g in some atlas of M4 to the 2 (deterministic)+8 (undetermined) degrees of
freedom breaks general covariance, because these quantities are neither tensors
nor invariants under diffeomorphisms (their functional form is atlas dependent).

Since the Hilbert action is invariant under Diff M4, one usually says that a
“dynamical gravitational field” is a 4-geometry overM 4, namely an equivalence
class of spacetimes (M4, 4g), solution of Einstein’s equations, modulo Diff M4.
See, however, the interpretational problems about what is observable in general
relativity for instance in Refs.[34,35], in particular the facts that at least before
the restriction to the solutions of Einstein’s equations i) scalars under Diff M4,
like 4R, are not Dirac’s observables but gauge dependent quantities; ii) the func-
tional form of 4gµν in terms of the physical gravitational field and, therefore, the
angle and distance properties of material bodies and the standard procedures of
defining measures of length and time based on the line element ds2, are gauge
dependent.

Instead in the ADM formalism with the extra notion of 3+1 splittings of
M4, the (tetrad) metric ADM action (differing from the Hilbert one by a surface
term) is quasi-invariant under the (14) 8 types of gauge transformations which
are the pull-back of the Hamiltonian group G of gauge transformations, whose
generators are the first class constraints of the theory . The Hamiltonian group G
has a subgroup (whose generators are the supermomentum and superhamiltonian
constraints) formed by the diffeomorphisms ofM4 adapted to its 3+1 splittings,
Diff M3+1 [it is different from Diff M4]. Moreover, the Poisson algebra of the
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supermomentum and superhamiltonian constraints reflects the embeddability in
M4 of the foliation associated with the 3+1 splitting [60].

Now in tetrad gravity the interpretation of the 14 gauge transformations
and of their gauge fixings (it is independent from the presence of matter) is the
following [a tetrad in a point of Στ is a local observer]: i) the gauge fixings of
the gauge boost parameters associated with the 3 boost constraints and of the
gauge angles associated with the 3 rotation constraints are equivalent to choose
the congruence of timelike observers to be used as a standard of non rotation;
ii) the gauge fixings of the 3 gauge parameters associated with the passive space
diffeomorphisms [Diff Στ ; change of coordinates charts] are equivalent to a
fixation of 3 standards of length by means of a choice of a coordinate system on
Στ [the measuring apparatus (the “rods”) should be defined in terms of Dirac’s
observables for some kind of matter, after its introduction into the theory]; iii)
according to constraint theory the choice of 3-coordinates on Στ induces the
gauge fixings of the 3 shift functions [i.e. of 4goi], whose gauge nature is connected
with the “conventionality of simultaneity” [61] [therefore, the gauge fixings are
equivalent to a choice of synchrinization of clocks and, as a consequence, to a
statement about the isotropy or anisotropy of the velocity of light in that gauge];
iv) the gauge fixing on the the momentum ρ(τ,σ) conjugate to the conformal
factor of the 3-metric [this gauge variable is the source of the gauge dependence
of 4-tensors and of the scalars under Diff M4, together with the gradients of the
lapse and shift functions] is a nonlocal statement about the extrinsic curvature
of the leaves Στ of the given 3+1 splitting of M4; since the superhamiltonian
constraint produces normal deformations of Στ [60] and, therefore, transforms a
3+1 splitting ofM4 into another one (the ADM formulation is independent from
the choice of the 3+1 splitting), this gauge fixing is equivalent to the choice of a
particular 3+1 splitting; v) the previous gauge fixing induces the gauge fixing of
the lapse function (which determines the packing of the leaves Στ in the chosen
3+1 splitting) and, therefore, is equivalent to the fixation of a standard of proper
time [again “clocks” should be built with the Dirac’s observables of some kind
of matter].

In the Hamiltonian formalism it is natural to define a “Hamiltonian kinemat-
ical gravitational field” as the equivalence class of spacetimes modulo the Hamil-
tonian group G, and different members of the equivalence class have in general
different 4-Riemann tensors [these equivalence classes are connected with the
conformal 3-geometries of the Lichnerowicz-York approach and contain differ-
ent gauge-related 4-geometries]. Then, a “Hamiltonian dynamical gravitational
field” is defined as a Hamiltonian kinematical gravitational fields which is solu-
tion of the Hamilton-Dirac equations generated by the weak ADM energy P̂ τ

ADM .
Since the Hilbert and ADM actions, even if they have different local symmetries
and invariances, both generate the same Einstein equations, the equivalence
classes of the “Hamiltonian dynamical gravitational fields” and of the standard
“dynamical gravitational fields” (a 4-geometry solution of Einstein’s equations)
coincide. Indeed, on the solutions of Einstein’s equations the gauge transforma-
tions generated by the superhamiltonian constraint (normal deformations of Στ )
and those generated by the canonical momenta of the lapse and shift functions
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together with the Στ diffeomorphisms generated by the supermomentum con-
straints are restricted by the Jacobi equations associated to Einstein’s equations
to be those Noether symmetries of the ADM action which are also dynamical
symmetries of the Hamilton equations and therefore they are a subset of the
spacetime diffeomorphisms Diff M4 (all of which are dynamical symmetries of
Einstein’s equations).

The 3-orthogonal gauges of tetrad gravity are the equivalent of the Coulomb
gauge in classical electrodynamics (like the harmonic gauge is the equivalent
of the Lorentz gauge). Only after a complete gauge fixing the 4-tensors and
the scalars under Diff M4 become measurable quantities (like the electromag-
netic vector potential in the Coulomb gauge): an experimental laboratory does
correspond by definition to a completely fixed gauge. At this stage it becomes
acceptable the proposal of Komar[62] and Bergmann[47] of identifying the points
of a spacetime (M4, 4g), solution of the Einstein’s equations in absence of mat-
ter, in a way invariant under spacetime diffeomorphisms, by using four bilinears
and trilinears in the Weyl tensors, scalar under Diff M4 and called “individu-
ating fields”(see also Refs.[34,35]), which do not depend on the lapse and shift
functions (but only on the gauge variables corresponding to the 3-coordinates on
Στ and to the momentum conjugate to the conformal factor of the 3-metric, so
that these fields carry the information on the choice of the 3-coordinates and of a
generalized extrinsic time), to build “physical 4-coordinates” (in each completely
fixed gauge they depend only on the two canonical pairs of Dirac’s observables of
the gravitational field), justifying a posteriori the standard measurement theory
presented in all textbooks on general relativity, which presuppones the individ-
uation of spacetime points.

Let us remember that Bergmann[47] made the following critique of general
covariance: it would be desirable to restrict the group of coordinate transfor-
mations (spacetime diffeomorphisms) in such a way that it could contain an
invariant subgroup describing the coordinate transformations that change the
frame of reference of an outside observer (these transformations could be called
Lorentz transformations; see also the comments in Ref.[63] on the asymptotic
behaviour of coordinate transformations); the remaining coordinate transforma-
tions would be like the gauge transformations of electromagnetism. This is what
we have done. In this way “preferred’ coordinate systems will emerge (the WSW
hypersurfaces with their preferred congruences of timelike observers whose 4-

velocity becomes asymptotically normal to Σ
(WSW )
τ at spatial infinity), which,

as said by Bergmann, are not “flat”: while the inertial coordinates are determined
experimentally by the observation of trajectories of force-free bodies, these in-
trinsic coordinates can be determined only by much more elaborate experiments
(probably with gyroscopes), since they depend, at least, on the inhomogeneities
of the ambient gravitational fields.

Since in the 3-orthogonal gauges we have the physical canonical basis rā, πā,
it is possible, but only in absence of matter, to define “void spacetimes” as the
equivalence class of spacetimes “without gravitational field”, whose members in
the 3-orthogonal gauges are obtained by adding by hand the second class con-
straints rā(τ,σ) ≈ 0, πā(τ,σ) ≈ 0 [one gets φ(τ,σ) = 1 as the relevant solution
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of the reduced Lichnerowicz equation] and, in particular, their Poincaré charges
vanish (this corresponds to the exceptional p(µ) = 0 orbit of the Poincaré group
and shows the peculiarity of these solutions with zero ADM mass). It is expected
that the void spacetimes can be defined in a gauge-independent way by adding
to the ADM action the requirement that the leaves Στ of the 3+1 splitting be
3-conformally flat, namely that the Cotton-York 3-conformal tensor vanishes.
The members of this equivalence class (the extension to general relativity of the
Galilean non inertial coordinate systems with their Newtonian inertial forces)
are gauge equivalent to Minkowski spacetime with Cartesian coordinates and it
is expected that they describe pure acceleration effects without physical gravi-
tational field (no tidal effects).

If we add [39] to the tetrad ADM action the action for N scalar particles
with positive energy in the form of Ref.[20] [where it was given on arbitrary
Minkowski spacelike hypersurfaces], the only constraints which are modified are
the superhamiltonian one, which gets a dependence on the matter energy density
M(τ,σ), and the 3 space diffeomorphism ones, which get a dependence on the
matter momentum density Mr(τ,σ). The canonical reduction and the determi-
nation of the Dirac observables can be done like in absence of matter. However,
the reduced Lichnerowicz equation for the conformal factor of the 3-metric in
the 3-orthogonal gauge and with ρ(τ,σ) ≈ 0 acquires now an extra dependence
on M(τ,σ) and Mr(τ,σ).

Since, as a preliminary result, we are interested in identifying explicitly the in-
stantaneous action-at-a-distance (Newton-like and gravitomagnetic) potentials
among particles hidden in tetrad gravity (like the Coulomb potential is hid-
den in the electromagnetic gauge potential), we shall make the strong approx-
imation of neglecting the (tidal) effects of the physical gravitational field by
putting rā(τ,σ) ≈ 0, πā(τ,σ) ≈ 0, even if it is not strictly consistent with the
Hamilton-Dirac equation (extremely weak gravitational fields). If, furthermore,
we develop the conformal factor φ(τ,σ) in a formal series in the Newton con-
stant G [φ = 1 +

∑∞
n=1G

nφn], one can find a solution φ = 1 +Gφ1 at order G
(post-Minkowskian approximation) of the reduced Lichnerowicz equation where
we put rā = πā = 0. However, due to a self-energy divergence in φ evaluated
at the positions ηi(τ) of the particles, one needs to rescale the bare masses to

physical ones, mi �→ φ−2(τ,ηi(τ))m
(phys)
i , and to make a regularization of the

type defined in Refs. [64]. Then, the regularized solution for φ can be put in
the reduced form of the ADM energy, which becomes [κi(τ) are the particle
momenta conjugate to ηi(τ); nij = [ηi − ηj ]/|ηi − ηj |]

P̂ τ
ADM =

∑N
i=1 c

√
m

(phys)2
i c2 + κ2

i (τ)−

−G
c2

∑
i �=j

q
m

(phys)2
i c2+�2

i (τ)
q
m

(phys)2
j c2+�2

j(τ)

|�i(τ)−�j(τ)| −
− G

8c2

∑
i �=j

3�i(τ)·�j(τ)−5�i(τ)·nij(τ)�j(τ)·nij(τ)
|�i(τ)−�j(τ)| +O(G2, rā, πā).

One sees the Newton-like and the gravitomagnetic (in the sense of York) po-
tentials (both of them need regularization) at the post-Minkowskian level (order
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G but exact in c) emerging from the tetrad ADM version of Einstein general
relativity when we ignore the tidal effects. For G=0 we recover N free scalar
particles on the Wigner hyperplane in Minkowski spacetime, as required by de-
parametrization. For c → ∞, we get the post-Newtonian Hamiltonian

HPN =
∑N

i=1
�

2
i (τ)

2m
(phys)
i

(1− 2G
c2

∑
j �=i

m
(phys)
j

|�i(τ)−�j(τ)|)−
G
2

∑
i �=j

m
(phys)
i m

(phys)
j

|�i(τ)−�j(τ)| −

− G
8c2

∑
i �=j

3�i(τ)·�j(τ)−5�i(τ)·nij(τ)�j(τ)·nij(τ)
|�i(τ)−�j(τ)| +O(G2, rā, πā),

which is of the type of the ones implied by the results of Refs.[64,65] [the differ-
ences are probably connected with the use of different coordinate systems and
with the fact that one has essential singularities on the particle worldlines and
the need of regularization].

The main open problems now under investigation are: i) the linearization
of the theory in the 3-orthogonal gauges in presence of matter to find the 3-
orthogonal gauge description of gravitational waves and to go beyond the previ-
ous instantaneous post-Minkowskian approximation at least in the 2-body case
relevant for the motion of binaries; ii) the replacement of scalar particles with
spinning ones to identify the precessional effects (like the Lense-Thirring one)
of gravitomagnetism; iii) the coupling to perfect fluids for the simulation of ro-
tating stars and for the comparison with the post-Newtonian approximations;
iv) the coupling of tetrad gravity to the electromagnetic field, to fermion fields
and then to the standard model, trying to make to reduction to Dirac’s observ-
ables in all these cases and to study their post-Minkowskian approximations; v)
the quantization of tetrad gravity in the 3-orthogonal gauge with ρ(τ,σ) ≈ 0
(namely after a complete breaking of general covariance): for each perturbative
(in G) solution of the reduced Lichnerowicz equation one defines a Schroedinger
equation in τ for a wave functional Ψ [τ ; rā] with the associated quantized ADM
energy P̂ τ

ADM [rā, i
δ
δrā

] as Hamiltonian; no problem of physical scalar product
is present, but only ordering problems in the Hamiltonian; moreover, one has
the Möller radius as a ultraviolet cutoff. Also a comparison with “loop quantum
gravity” [66], which respects general covariance but only for fixed lapse and shift
functions, has still to be done.

Therefore, a well defined classical stage for a unified description of the four
interactions is emerging, even if many aspects have only been clarified at a heuris-
tic level so that a big effort from both mathematical and theoretical physicists is
still needed. It will be exciting to see whether in the next years some reasonable
quantization picture will develop from this classical framework.
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D18, 1881 and 1887 (1978).

9. H.Sazdjian, Ann.Phys.(N.Y.) 136, 136 (1981); Phys.Rev. D33, 3401 (1986);
J.Math.Phys. 28, 2618 and 1988 (1987), 29, 1620 (1987); Ann.Phys. (N.Y.) 191,
52 (1989); in Proc.Int. Symp. “Extended Objects and Bound Systems”, eds.
O.Hara, S.Ishida and S.Naka (World Scientific, Singapore, 1992). J.Bijtebier and
J.Brockaert, Nuovo Cim. A105, 351 and 625 (1992); in Proc.Int.Symp. “Extended
Objects and Bound Systems”, eds. O.Hara, S.Ishida and S.Naka (World Scientific,
Singapore, 1992).

10. H.W.Crater and P.Van Alstine, J.Math.Phys. 23, 1697 (1982); Ann.Phys.(N.Y)
148, 57 (1983); Phys.Rev.Lett. 53, 1577 (1984); Phys.Rev. D30, 2585 (1984);
D34, 1932 (1986); D36, 3007 (1987); D37, 1982 (1988); J.Math.Phys. 31, 1998
(1990); Phys.Rev. D46, 766 (1992). H.W.Crater, R.L. Becker, C.Y.Wong and
P.Van Alstine, Phys.Rev. D46, 5117 (1992); in Proc.Int.Symp. “Extended Ob-
jects and Bound Systems”, eds. O.Hara, S.Ishida and S.Naka (World Scientific,
Singapore, 1992). H.W.Crater and D.Yang, J.Math.Phys. 32, 2374 (1991).

11. G.Longhi, L.Lusanna and J.M.Pons, J.Math.Phys. 30, 1893 (1989).
12. F.Colomo, G.Longhi and L.Lusanna, Int.J.Mod.Phys. A5, 3347 (1990);

Mod.Phys.Letters A5, 17 (1990). F.Colomo and L.Lusanna, Int.J.Mod.Phys. A7,
1705 and 4107 (1992).

13. L.Lusanna, Int.J.Mod.Phys. A10, 3531 and 3675 (1995).
14. V.Moncrief, J.Math.Phys. 20, 579 (1979). M.Cantor, Bull.Am.Math.Soc. 5, 235

(1981).



224 Luca Lusanna

15. L.Lusanna and P.Valtancoli, Int.J.Mod.Phys. A12, 4769 (1997) (HEP-
TH/9606078) and Int.J.Mod.Phys. A12, 4797 (1997). (HEP-TH/9606079).

16. L.Lusanna and P.Valtancoli, Int.J.Mod.Phys. A13, 4605 (1998) (HEP-
TH/9707072).

17. G.Longhi and L.Lusanna, Phys.Rev. D34, 3707 (1986).
18. K.Kuchar, J.Math.Phys. 17, 777, 792, 801 (1976); 18, 1589 (1977).
19. P.A.M.Dirac, Rev.Mod.Phys. 21 (1949) 392.
20. L.Lusanna, Int.J.Mod.Phys. A12, 645 (1997).
21. M.Pauri and M.Prosperi, J.Math.Phys. 16, 1503 (1975).
22. L.Lusanna and M.Materassi, “The Canonical Decomposition in Collective and Rel-

ative Variables of a Klein-Gordon Field in the Rest-Frame Wigner-Covariant In-
stant Form”, Firenze Univ.preprint (HEP-TH/9904202).

23. G.Longhi and M.Materassi, J.Math.Phys. 40, 480 (1999) (HEP-TH/9803128);
“Collective and Relative Variables for a Classical Klein-Gordon Field”, Firenze
Univ.preprint (HEP-TH/9890024), to appear in Int.J.Mod.Phys. A.

24. W.G.Dixon, J.Math.Phys. 8, 1591 (1967). “Extended Objects in General Relativ-
ity: their Description and Motion”, in “Isolated Gravitating Systems in General
Relativity”, ed.J.Ehlers (North-Holland, Amsterdam, 1979).

25. D.Alba and L.Lusanna, Int.J.Mod.Phys. A13, 2791 (1998) (HEP-TH/9705155).
26. D.Alba and L.Lusanna, Int.J.Mod.Phys. A13, 3275 (1998) (HEP-TH/9705156).
27. F.Bigazzi and L.Lusanna, Int.J.Mod.Phys. A14, 1429 (1999) (HEP-TH/9807052).
28. F.Bigazzi and L.Lusanna, Int.J.Mod.Phys. A14, 1877 (1999) (HEP-TH/9807054).
29. C.Lämmerzahl, J.Math.Phys. 34, 3918 (1993).
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Meaning of Noncommutative Geometry
and the Planck-Scale Quantum Group
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Abstract. This is an introduction for nonspecialists to the noncommutative geometric
approach to Planck scale physics coming out of quantum groups. The canonical role
of the ‘Planck scale quantum group’ C [x]I�C [p] and its observable-state T-duality-like
properties are explained. The general meaning of noncommutativity of position space
as potentially a new force in Nature is explained as equivalent under quantum group
Fourier transform to curvature in momentum space. More general quantum groups
C (G� )I�U(g) and Uq(g) are also discussed. Finally, the generalisation from quantum
groups to general quantum Riemannian geometry is outlined. The semiclassical limit
of the latter is a theory with generalised non-symmetric metric gµν obeying ∇µgνρ −
∇νgµρ = 0.

1 Introduction

There are currently several approaches to Planck-scale physics and of them ‘Non-
commutative geometry’ is probably the most radical but also the least well-
tested. As Lee Smolin in his lectures at the conference was kind enough to put
it, it is ‘promising but too early to tell’. Actually my point of view, which I
will explain in these lectures, is that some kind of noncommutative geometry is
inevitable whatever route we take to the Planck scale. Whether we evolve our
understanding of string theory, compute quasiclassical states in loop-variable
quantum gravity, or just investigate the intrinsic mathematical structure of ge-
ometry and quantum theory themselves (my own line), all roads will in my
opinion lead to some kind of noncommutative geometry as the next more gen-
eral geometry beyond nonEuclidean that is needed at the Planck scale where
both quantum and gravitational effects are strong. I think the need for this and
its general features can be demonstrated from simple nontechnical arguments
and will try to do this here. These philosophical and conceptual issues are in
Section 2.

Beyond this, and definitely a matter of opinion, it seems to me that there
is are certain philosophical principles [1] which can serve as a guide to what
Planck scale physics should be, in particular what I have called the principle
of representation-theoretic self-duality (of which T-duality is one manifestation).
I believe that to proceed one has to ask in fact what is the nature of physical
reality itself. In fact I do not think that theoretical physicists can any longer
afford to shy away from such questions and, indeed, with proposals for Planck-
scale physics beginning to emerge it is already clear that some new philosophical
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basis is going to be needed which will likely be every bit as radical as those that
came with quantum mechanics and general relativity. My own radical philosophy
in [2][3][1] basically takes the reciprocity ideas of Mach to a modern setting. But
it also suggests a different concept of reality, which I call relative realism, from
the reductionist one that most theoretical physicists are still unwilling to give
up (I said it would be radical). This might seem fanciful but what it boils down
to in practice is an extension of ideas of Fourier theory to the quantum domain.
Section 3 provides a modern introduction to this.

Next I will try to convince you that while there are still several different ideas
for what exactly noncommutative geometry should be, there is slowly emerging
what I call the ‘quantum groups approach to noncommutative geometry’ which is
already fairly complete in the sense that it has the same degree of ‘flabbiness’ as
Riemannian geometry (is not tied to specific integrable systems etc.) while at the
same time it includes the ‘zoo’ of already known naturally occurring examples,
mostly linked to quantum groups. Picture yourself for a moment in the times
of Gauss and Riemann; clearly spheres, tori, etc., were evidently examples of
something, but of what? In searching for this Riemann was able to formulate
the notion of Riemannian manifold as a way to capture known examples like
spheres and tori but broad enough to formulate general equations for the intrinsic
structure of space itself (or after Einstein, space-time). Theoretical physics today
is in a parallel situation with many naturally occurring examples from a variety
of sources and a clear need for a general theory. Our approach[4] is based on
fiber bundles with quantum group fiber[5], and we will come to it by the end of
the lectures, in Section 6. It includes a working definition of ‘quantum manifold’.

In between, I will try to give you a sense of some noncommutative geometries
out there from which our intuition has to be drawn. We will ‘see the sights’ in
the land of noncommutative geometry at least from the quantum groups point of
view. Just as Lie groups are the simplest Riemannian manifolds, quantum groups
are the simplest noncommutative spaces. Their homogeneous spaces are also
covered, as well as quantum planes (which are more properly braided groups).
We refer to [6] for more on quantum groups themselves.

At the same time, the physics reader will no doubt also want to see testable
predictions, detailed models etc. While, in my opinion, it is still too early to rush
into building models and making predictions (‘one cannot run before one can
walk’) I will focus on at least one toy model of Planck-scale physics using these
techniques. This is the Planck-scale quantum group introduced 10 years ago in
[3][2] and exhibiting even then many of the features one might consider important
for Planck scale physics today, including duality. This is the topic of Section 4.
It is not, however, the ‘theory of everything’ or M-theory etc. I seriously doubt
that Einstein could have formulated general relativity without the mathematical
definition of a ‘manifold’ having been sorted out by Riemann a century before
(and which I would guess had filtered down to Einstein’s mathematical mentors
such as Minkowski). In the same way, one really needs to sort out the correct
or ‘natural’ definitions of noncommutative geometry some more (in particular
the Ricci tensor and stress energy tensor are not yet understood) before making
attempts at a full theory with testable predictions. This is on the one hand
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mathematics but on the other hand it has to be guided by physical intuition with
or even without firm predictive models. In fact the structure of the mathematical
possibilities of noncommutative geometry (which means for us results in the
theory of algebra) can tell us a lot about any actual or effective theory even if
it is not presently known.

The general family of bicrossproduct quantum groups arising in this way out
of Planck scale physics contains many more examples (it is one of the two main
constructions by which quantum groups originated in physics.) For example,
there is a quantum group C (G� )I�U(g) for every complex simple Lie algebra g.
All these bicrossproduct quantum groups can be viewed as the actual quantum
algebras of observables of actual quantum systems and can be viewed precisely
as models unifying quantum and gravity-like effects [2][3]. For the record, the
bicrossproduct construction I� was introduced in this context at about the same
time (in 1986) but independently of the more well-known quantum groups Uq(g)
[7][8], in particular before I had even heard of V.G. Drinfeld or integrable sys-
tems. To this day the two classes of quantum groups, although constructed from
the same data g, have never been directly related (this remains an interesting
open problem). The situation is shown in Figure 1. To build a theory of non-
commutative geometry we need to include naturally occurring examples such as
these.

We also need to include the more traditional noncommutative algebras to
which people have traditionally tried to develop geometric pictures, namely the
canonical commutation relations algebra [x, p] = ı~ or its group version the Weyl
algebra or ‘noncommutative torus’ vu = eıαuv as in the work of A. Connes[9].
We can also consider the matrix algebras Mn(C ) as studied by Dubois-Violette,
Madore and others; as we saw seen in the beautiful lecture of Richard Kerner at
the conference, one can do a certain amount of noncommutative geometry for
such algebras too. On the other hand, in some sense these are actually all the
same example in one form or another, i.e. basically the algebra of operators on
some Hilbert space (at least for generic α). These examples and the traditional
ideas of vector fields as derivations and points as maximal ideals etc., come from
algebraic geometry and predate quantum groups. In my opinion, however, one
cannot build a valid noncommutative geometry always on the basis of essentially
one example (and a lot of elegant mathematics) – one has to also include the rich
vein of practical examples such as the quantum groups above. The latter have
a much clearer geometric meaning but very few derivations or maximal ideals
etc., i.e. we have to develop a much less obvious noncommutative differential
geometry if we are to include them as well as the traditional matrix algebras
and of course the commutative case corresponding to usual geometry. This is
precisely what has emerged slowly in recent years and that which I will try to
explain.

In Section 5 we turn for completeness, to the other and more well-known
type of quantum groups, the q-deformed enveloping algebras Uq(g). These did
not arise at all in connection with Planck scale physics or even directly as the
quantisation of any physical system. Rather they are ‘generalised symmetries’
of quantum or lattice integrable systems. Nevertheless they are also examples
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Fig. 1. The landscape of noncommutative geometry today. Some isolated ‘traditional’
objects such as matrix algebras and the noncomm. torus, and two classes of quantum
groups

of noncommutative geometry and, if recent conjectures of Lee Smolin and col-
laborators prove correct, they are natural descriptions of the noncommutative
geometry coming out of the loop variable approach to quantum gravity. The
more established meaning of these quantum groups which we will focus on is
that they induce braid statistics on particles transforming as their represen-
tations. In effect the dichotomy of particles into bosons (force) and fermions
(matter) is broken in noncommutative geometry and in fact both are unified
with each other and with quantisation. Roughly speaking the meaning of q here
is a generalisation of the −1 for supersymmetry. So the natural noncommutative
geometry here is ‘braided geometry’[10]. Yet at the same time one may write q
in terms of Planck’s constant or, according to [11], the cosmological constant.
It means that one physical manifestation of quantum gravity effects is as braid
(e.g. fractional) statistics.

Finally, more accessible perhaps to many readers will be not so much our
proposals for the full noncommutative theory but its semiclassical predictions;
in order to be naturally made noncommutative one has to shift ones point of view
a little and indeed move to a slightly more general notion of classical Riemannian
geometry. The main prediction is that one should replace the notion of metric and
its Levi-cevita connection by a notion of nondegenerate 2-tensor (not necessarily
symmetric) and the notion of vanishing torsion and vanishing cotorsion. The
cotorsion tensor associated to a 2-tensor is a new concept recently introduced
in [4]. The resulting self-dual generalisation of the usual metric compatibility
becomes

∇µgνρ −∇νgµρ = 0.

The generalisation allows a synthesis of symplectic and Riemannian geometry,
which is a semiclassical analogue of the quantum-gravity unification problem.
Not surprisingly, the above ideas turn out to be related at the semiclassical level
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to other ideas for Planck scale physics such as T-duality for sigma models on
Poisson-Lie groups[12], see [13].

2 The meaning of noncommutative geometry

It stands to reason that if one seriously wants to unify quantum theory and
gravity into a single theory with a single elegant point of view, one must first
formulate each in the same language. On the side of gravity this is perfectly
well-known and we do not need to belabour it; instead of points in a manifold
one should and does speak in terms of the algebra of its coordinate functions
e.g. (locally) position coordinates x, say. Geometrical operations can then be
expressed in terms of this algebra, for example a vector field might be a derivation
on the algebra. ‘Points’ might be maximal ideals. This conventional point of view
(called algebraic geometry) doesn’t really work in practice in the noncommutative
case, i.e. it needs to be modified, but it is a suitable starting point for the
unification.

What about quantum mechanics? Well this too is some kind of algebra, of
course noncommutative due to noncommutation relations between position and
momentum. So the language we need is that of algebras. We need to modify
usual algebraic geometry in such a way that it extends to algebras of observ-
ables arising in quantum systems. At the same time we should, I believe, also be
guided by finding natural mathematical definitions that both include nontriv-
ial applications in mathematics and encode those algebras in quantum systems
which have a clear geometrical structure self-evidently in need of being encoded
(perhaps even without direct physical input about Planck scale physics). For ex-
ample, before the discovery of quantum groups noncommutative geometry made
only minimal changes in pursuit of the above idea, e.g. to let the algebra be
noncommutative but nevertheless define a vector field as a derivation. All very
elegant, but not sufficient to include ‘real world’ examples like quantum groups.

One other general point. For classical systems we frequently make use of deep
classification and other theorems about smooth manifolds; the rich structure of
what is mathematically allowed e.g. by topological constraints is often a guide
to building effective theories even if we do not know the details of the under-
lying theory. If we accept the above then the corresponding statement is that
deep mathematical theorems about the classification and structure of noncom-
mutative algebras ought to tell us about the possible effective corrections from
quantum gravity even before a full theory is known (as well as be a guide to the
natural structure of the full theory). We will see this in some toy examples in the
next chapter. By contrast many physicists seem to believe that the only algebra
in physics is the CCR algebra (or its fermionic version), or possibly Lie algebras,
as if there is not in fact a much richer world of noncommutative algebras for
their theories to draw upon. In fact this noncommutative world has to be at
least as rich as the theory of manifolds since it must contain them in the special
commutative limit. I contend that the intrinsic properties of noncommutative
algebras is where we should look for new principles and ideas for the Planck
scale.
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2.1 Curvature in momentum space – a possible new force of nature

Before going into details of the modern approach to noncommutative geometry
we want to consider some general issues about unifying quantum theory and
geometry using algebra. In particular, what finally emerges as the true mean-
ing of noncommutative geometry for Planck scale physics? In a nutshell, the
answer I believe is as follows. Thus, to survive to the Planck scale we should
cling to only the very deepest ideas about the nature of physics. In my opin-
ion among the deepest is ‘Born reciprocity’ or the arbitrariness under position
and momentum. Now, in conventional flat space quantum mechanics we take
the x commuting among themselves and their momentum p likewise commuting
among themselves. The commutation relation

[xi, pj ] = ı~δij (1)

is likewise symmetric in the roles of x,p (up to a sign). To this symmetry may
be attributed such things as wave-particle duality. A wave has localised p and a
particle has localised x.

Now the meaning of curvature in position space is, roughly speaking, to
make the natural conserved p coordinates noncommutative. For example, when
the position space is a 3-sphere the natural momentum is su2. The enveloping
algebra U(su2) should be there in the quantum algebra of observables with
relations

[pi, pj ] =
ı

R
εijkpk (2)

where R is proportional to the radius of curvature of the S3.
By Born-reciprocity then there should be another possibility which is curva-

ture in momentum space. It corresponds under Fourier theory to noncommuta-
tivity of position space. For example if the momentum space were a sphere with
m proportional to the radius of curvature, the position space coordinates would
correspondingly have noncommutation relations

[xi, xj ] =
ı

m
εijkxk. (3)

Mathematically speaking this is surely a symmetrical and equally interesting
possibility which might have observable consequences and might be observed.
Note that m here is just a parameter not necessarily mass, but our use of it
here does suggest the possibility of understanding the geometry of the mass-
shell as noncommutative geometry of the position space x. This may indeed be
an interesting and as yet unexplored application of these ideas. In general terms,
however, the situation is clear: for systems constrained in position space one
has the usual tools of differential geometry, curvature etc., of the constrained
‘surface’ in position space or tools for noncommutative algebras (such as Lie
algebras) in momentum space. For systems constrained in momentum space one
needs conventional tools of geometry in momentum space or, by Fourier theory,
suitable tools of noncommutative geometry in position space.
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In mathematical terms, these latter two examples (2),(3) demonstrate the
point of view of noncommutative geometry: we are viewing the enveloping alge-
bra U(su2) as if it were the algebra of coordinates of some system, i.e. we want
to answer the question

U(su2) = C(?)

where ? will not be any usual kind of space (where the coordinates would com-
mute). This is what we have called in [14] a ‘quantum-geometry transformation’
since a quantum symmetry point of view (such as the angular momentum in a
quantum system) is viewed ‘up-side-down’ as a geometrical one. The simplest
example U(b+) was studied from this point of view as a noncommutative space
in [15], actually slightly more generally as Uq(b+).

For particular examples of this type we do not of course need any fancy
noncommutative geometric point of view – Lie theory was already extensively
developed just to handle such algebras. But if we wish to unify quantum and
geometric effects then we should start taking this noncommutative geometric
viewpoint even on such familiar algebras. What are ‘vector fields’ on U(su2)?
What is Fourier transform

F : U(su2) → C (SU2 )

from the momentum coordinates to the SU2 position coordinates? These are non-
trivial (but essentially solved) questions. Understanding them, we can proceed to
construct more complex examples of noncommutative geometry which are nei-
ther U(g) nor C(G), i.e. where noncommutative geometry is really needed and
where both quantum and geometrical effects are unified. Vector fields, Fourier
theory etc., extend to this domain and allow us to explore consistently new ideas
for Planck scale physics. This approach to Planck scale physics based particu-
larly on Fourier theory to extend the familiar x,p reciprocity to the case of
nonAbelian Lie algebras and beyond is due to the author in [2][16][3][1] [14] and
elsewhere.

Notice also that the three effects exemplified by the three equations (1)–(3)
are all independent. They are controlled by three different parameters ~, R,m
(say). Of course in a full theory of quantum gravity all three effects could exist
together and be unified into a single noncommutative algebra generated by suit-
able x,p. Moreover, even if we do not know the details of the correct theory of
quantum gravity, if we assume that something like Born reciprocity survives then
all three effects indeed should show up in the effective theory where we consider
almost-particle states with position and momenta x,p. It would require fine tun-
ing or some special principle to eliminate any one of them. Also the same ideas
could apply at the level of the quantum gravity field theory itself, but this is a
different question.

2.2 Algebraic structure of quantum mechanics

In the above discussion we have assumed that quantum systems are described
by algebras generated by position and momentum. Here we will examine this a
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little more closely. The physical question to keep in mind is the following: what
happens to the geometry of the classical system when you quantise?

To see the problem consider what you obtain when you quantise a sphere
or a torus. In usual quantum mechanics one takes the Hilbert space on position
space, e.g. H = L2(S2) or H = L2(T 2) and as ‘algebra of observables’ one takes
A = B(H) the algebra of all bounded (say) operators. It is decreed that every
self-adjoint hermitian operator a (or its bounded exponential more precisely) is
an observable of the system and its expectation value in state |ψ >∈ H is

< a >ψ=< ψ|a|ψ > .

The problem with this is thatB(H) is the same algebra in all cases. The quantum
system does know about the underlying geometry of the configuration space or
of the phase space in other ways; the choice of ‘polarisation’ on the phase space
or the choice of Hamiltonian etc. – such things are generally defined using the
underlying position or phase space geometry – but the abstract algebra B(H)
doesn’t know about this. All separable Hilbert spaces are isomorphic (although
not in any natural way) so their algebras of operators are also all isomorphic.
In other words, whereas in classical mechanics we use extensively the detailed
geometrical structure, such as the choice of phase space as a symplectic manifold,
all of this is not recorded very directly in the quantum system. One more or
less forgets it, although it resurfaces in relation to the more restricted kinds of
questions (labeled by classical ‘handles’) one asks in practice about the quantum
system. In other words, the true quantum algebra of observables should not be
the entire algebra B(H) but some subalgebra A ⊂ B(H). The choice of this
subalgebra is called the kinematic structure and it is precisely here that the
(noncommutative) geometry of the classical and quantum system is encoded.
This is somewhat analogous to the idea in geometry that every manifold can be
visualised concretely embedded in some Rn . Not knowing this and thinking that
coordinates x were always globally defined would miss out on all physical effects
that depend on topological sectors, such as the difference between spheres and
tori.

Another way to put this is that by the Darboux theorem all symplectic man-
ifolds are locally of the canonical form dx∧dp for each coordinate. Similarly one
should take (1) (which essentially generates all of B(H), one way or another)
only locally. The full geometry in the quantum system is visible only by consid-
ering more nontrivial algebras than this one to bring out the global structure.
We should in fact consider all noncommutative algebras equipped with certain
structures common to all quantum systems, i.e. inspired by B(H) as some kind
of local model or canonical example but not limited to it. The conditions on our
algebras should also be enough to ensure that there is a Hilbert space around
and that A can be viewed concretely as a subalgebra of operators on it.

Such a slight generalisation of quantum mechanics which allows this kine-
matic structure to be exhibited exists and is quite standard in mathematical
physics circles. The required algebra is a von Neumann algebra or, for a slightly
nicer theory, a C∗-algebra. This is an algebra over C with a ∗ operation and a



Planck-scale quantum group 235

norm || || with certain completeness and other properties. The canonical example
is B(H) with the operator norm and ∗ the adjoint operation, and every other is
a subalgebra.

Does this slight generalisation have observable consequences? Certainly. For
example in quantum statistical mechanics one considers not only state vectors
|ψ > but ‘density matrices’ or generalised states. These are convex linear com-
binations of the projection matrices or expectations associated to state vectors
|ψi > with weights si ≥ 0 and

∑
i si = 1. The expectation value in such a ‘mixed

state’ is

< a >=
∑
i

si < ψi|a|ψi > (4)

In general these possibly-mixed states are equivalent to simply specifying the
expectation directly as a linear map < >: B(H) → C . This map respects the
adjoint or ∗ operation on B(H) so that < a∗a >≥ 0 for all operators a (i.e. a
positive linear functional) and is also continuous with respect to the operator
norm. Such positive linear functionals on B(H) are precisely of the above form
(4) given by a density matrix, so this is a complete characterisation of mixed
states with reference only to the algebra B(H), its ∗ operation and its norm.
The expectations < >ψ associated to ordinary Hilbert space states are called
the ‘pure states’ and are recovered as the extreme points in the topological
space of positive linear functionals (i.e. those which are not the convex linear
combinations of any others).

Now, if the actual algebra of observables is some subalgebra A ⊂ B(H) then
any positive linear functional on the latter of course restricts to one on A, i.e.
defines an ‘expectation state’ A→ C which associates numbers, the expectation
values, to each observable a ∈ A. But not vice-versa, i.e. the algebra A may have
perfectly well-defined expectation states in this sense which are not extendable
to all of B(H) in the form (4) of a density matrix. Conversely, a pure state on
B(H) given by |ψ >∈ H might be mixed when restricted to A. The distinction
becomes crucially important for the correct analysis of quantum thermodynamic
systems for example, see [17].

The analogy with classical geometry is that not every local construction may
be globally defined. If one did not understand that one would miss such impor-
tant things as the Bohm-Aharanov effect, for example. Although I am not an
expert on the ‘measurement problem’ in the philosophy of quantum mechanics it
does not surprise me that one would get into inconsistencies if one did not realise
that the algebra of observables is a subalgebra of B(H). And from our point of
view it is precisely to understand and ‘picture’ the structure of the subalgebra
for a given system that noncommutative geometry steps in. I would also like to
add that the problem of measurement itself is a matter of matching the quantum
system to macroscopic features such as the position of measuring devices. I would
contend that to do this consistently one first has to know how to identify aspects
of ‘macrospopic structure’ in the quantum system without already taking the
classical limit. Only in this way can one meaningfully discuss concepts such as



236 Shahn Majid

partial measurement or the arbitrariness of the division into measurer and mea-
sured. Such an identification is exactly the task of noncommutative geometry,
which deals with extending our macroscopic intuitions and classical ‘handles’
over to the quantum system. Put another way, the correspondence principle in
quantum mechanics typically involves choosing local coordinates like x,p to map
over. Its refinement to correspond more of the global geometry into the quantum
world is the practical task of noncommutative geometry.

2.3 Principle of representation-theoretic self-duality

With the above preambles, we are in a position to consider some speculation
about Planck scale physics. Personally I believe that anything we write down that
is based on our past experience and not on the deepest philosophical principles is
not likely to survive except as an approximation. For example, while string theory
may indeed survive to models of the Planck scale as a certain approximation
valid in a certain domain, it does not have enough of a radical new philosophy
to provide the true conceptual leaps. I should apologise for this belief but I do
not believe that Nature cares about the historically convenient route by which
we might arrive at the right concepts for the Planck scale.

So as a basis we should stick only to some of the deepest principles. In
my opinion one of the deepest principles concerns the nature of mathematics
itself. Namely throughout mathematics one finds an intrinsic dualism between
observer and observed as follows. When we think of a function f being evaluated
on x ∈ X , we could equally-well think of the same numbers as x being evaluated
on f a member of some dual structure f ∈ X̂ :

Result = f(x) = x(f).

Such a ‘turning of the tables’ is a mathematical fact. For any mathematical
concept X one may consider maps or ‘representations’ from it to some self-
evident class of objects (say rational numbers or for convenience real or complex
numbers) wherein our results of measurements are deemed to lie. Such repre-
sentations themselves form a dual structure X̂ of which elements of X can be
equally well viewed as representations. But is such a dual structure equally real?
I postulated in 1987 that indeed it should be so in a complete theory. Indeed[1],
The search for a complete theory of physics is the search for a self-dual formula-
tion in the above representation-theoretic sense (The principle of representation-
theoretic self-duality). Put another way, a complete theory of physics should ad-
mit a ‘polarisation’ into two halves each of which is the set of representations
of the other. This division should be arbitrary – one should be able to reverse
interpretations (or indeed consider canonical transformations to other choices of
‘polarisation’ if one takes the symplectic analogy).

Note that by completeness here I do not mean knowing in more and more
detail what is true in the real world. That consists of greater and greater com-
plexity but it is not theoretical physics. I’m considering that a theorist wants to
know why things are the way they are. Ideally I would like on my deathbed to
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be able to say that I have found the right point of view or theoretical-conceptual
framework from which everything else follows. Working out the details of that
would be far from trivial of course. This is a more or less conventional reduc-
tionist viewpoint except that the Principle asserts that we will not have found
the required point of view unless it is self-dual.

For example, there is a sense in which geometry – or ‘gravity’ is dual to
quantum theory or matter. This is visible for some simple models such as spheres
with constant curvature where it is achieved by Fourier theory. We will be saying
more about this later. If we accept this then in general terms Planck scale physics
has to unify these mutually dual concepts into one self-dual structure. Ideally
then Einstein’s equation

Gµν = Tµν (5)

would appear as some kind of self-duality equation within this self-dual con-
text. Here the stress-energy tensor Tµν measures how matter responds to the
geometry, while the Einstein tensor Gµν measures how geometry responds to
matter. This is the part of Mach’s principle which apparently inspired Einstein.
The question is how to make these ideas precise in a representation-theoretic
sense. While this still remains a long-term goal or vision, there are some toy
models[3] where some of the required features can be seen. We come to them in
a later section. For the moment we note only that one needs clearly some kind of
noncommutative geometry because Tµν should really be the quantum operator
stress-energy and its coupling to Gµν through its expectation value is surely only
the first approximation or semiclassical limit of an operator version of (5). But
an operator version of Gµν only makes sense in the context of noncommutative
geometry. What we would hope to find, in a suitable version of these ideas, is
a self-dual setting where there was a dual interpretation in which Tµν was the
Einstein tensor of some dual system and Gµν its stress-energy. In this way the
duality and self-duality of the situation would be made manifest.

This is more or less where quantum groups come in, as a simple and soluble
version of the more general unification problem. The situation is shown in Fig-
ure 2. Thus, the simplest theories of physics are based on Boolean algebras (a
theory consists of classification of a ‘universe’ set into subsets); there is a well-
known duality operation interchanging a subset and its complement. The next
more advanced self-dual category is that of (locally compact) Abelian groups
such as Rn . In this case the set of 1-dimensional (ir)reps is again an Abelian
group, i.e. the category of such objects is self-dual. In the topological setting one
has R̂n∼=Rn so that these groups (which are at the core of linear algebra) are
self-dual objects in the self-dual category of Abelian groups. Of course, Fourier
theory interchanges these two. More generally, to accommodate other phenom-
ena we step away from the self-dual axis. Thus, nonAbelian Lie groups such as
SU2 as manifolds provide the simplest examples of curved spaces. Their duals,
which means constructing irreps, appear as central structures in quantum field
theory (as judged by any course on particle physics in the 1960’s). Wigner even
defined a particle as an irrep of the Poincaré group. The unification of these two
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Fig. 2. Representation-theoretic approach to Planck-scale physics. The unification of
quantum and geometrical effects is a drive to the self-dual axis. Arrows denote inclusion
functors

concepts, groups and groups duals was for many years an open problem in math-
ematics. Hopf algebras or quantum groups had been invented as the next more
general self-dual category containing groups and group duals (and with Hopf al-
gebra duality reducing to Fourier duality) back in 1947 but no general classes of
quantum groups going beyond groups or group duals i.e. truly unifying the two
were known. In 1986 it was possible to view this open problem as a ‘toy model’
or microcosm of the problem of unifying quantum theory and gravity and the
bicrossproduct quantum groups such as C (G� )I�U(g) were introduced on this
basis as toy models of Planck scale physics[3]. The construction is self-dual (the
dual is of the same general form). At about the same time, independently, some
other quantum groups Uq(g) were being introduced from a different point of view
both mathematically and physically (namely as generalised symmetries). We go
into details in later sections.

We end this section with some promised philosophical remarks. First of all,
why the principle of self-duality? Why such a central role for Fourier theory? The
answer I believe is that something very general like this (see the introductory
discussion) underlies the very nature of what it means to do science. My model
(no doubt a very crude one but which I think captures some of the essence
of what is going one) is as follows. Suppose that some theorist puts forward a
theory in which there is an actual group G say ‘in reality’ (this is where physics
differs from math) and some experimentalists construct tests of the theory and
in so doing they routinely build representations or elements of Ĝ. They will end
up regarding Ĝ as ‘real’ and G as merely an encoding of Ĝ. The two points of
view are in harmony because mathematically (in a topological context)

G∼= ˆ̂
G.
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So far so good, but through the interaction and confusion between the experi-
mental and theoretical points of view one will eventually have to consider both,
i.e. G × Ĝ as real. But then the theorists will come along and say that they
don’t like direct products, everything should interact with everything else, and
will seek to unify G,Ĝ into some more complicated irreducible structure G1, say.
Then the experimentalists build Ĝ1 ... and so on. This is a kind of engine for
the evolution of Science.

For example, if one regarded, following Newton that space R
n is real, its

representations R̂n are derived quantities p = mẋ. But after making diverse such
representations one eventually regards both x and p as equally valid, equivalent
via Fourier theory. But then we seek to unify them and introduce the CCR
algebra (1). And so on. Note that this is not intended to be a historical account
but a theory for how things should have gone in an ideal case without the twists
and turns of human ignorance.

One could consider this point of view as window dressing. Surely quantum
mechanics was ‘out there’ and would have been discovered whatever route one
took? Yes, but if if the mechanism is correct even as a hindsight, the same mech-
anism does have predictive power for the next more complicated theory. The
structure of the theory of self-dual structures is nontrivial and not everything
is possible. Knowing what is mathematically possible and combining with some
postulates such as the above is not empty. For example, back in 1989 and moti-
vated in the above manner it was shown that the category of monoidal categories
(i.e. categories equipped with tensor products) was itself a monoidal category,
i.e. that there was a construction Ĉ for every such category C[18]. Since then
it has turned out that both conformal field theory and certain other quantum
field theories can indeed be expressed in such categorical terms. Geometrical
constructions can also be expressed categorically[19]. On the other hand, this
categorical approach is still under-developed and its exact use and the exact
nature of the required duality as a unification of quantum theory and gravity is
still open. I would claim only ‘something like that’ (one should not expect too
much from philosophy alone).

Another point to be made from Figure 2 is that if quantum theory and
gravity already take us to very general structures such as categories themselves
for the unifying concept then, in lay terms, what it means is that the required
theory involves very general concepts indeed of a similar level to semiotics and
linguistics (speaking about categories of categories etc.). It is almost impossible
to conceive within existing mathematics (since it is itself founded in categories)
what fundamentally more general structures would come after that. In other
words, the required mathematics is running out it least in the manner that it
was developed in this century (i.e. categorically) and at least in terms of the
required higher levels of generality in which to look for self-dual structures. If
the search for the ultimate theory of physics is to be restricted to logic and
mathematics (which is surely what distinguishes science from, say, poetry), then
this indeed correlates with our physical intuition that the unification of quantum
theory and gravity is the last big unification for physics as we know it, or as were
that theoretical physics as we know it is coming to an end. I would agree with
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this assertion except to say that the new theory will probably open up more

questions which are currently considered metaphysics and make them physics,

so I don’t really think we will be out of a job even as theorists (and there will

always be an infinite amount of ‘what’ work to be done even if the ‘why’ question

was answered at some consensual level).

As well as seeking the ‘end of physics’, we can also ask more about its birth.

Again there are many nontrivial and nonempty questions raised by the self-

duality postulate. Certainly the key generalisation of Boolean logic to intuition-

istic logic is to relax the axiom that a ∪ ã = 1 (that a or not a is true). Such an

algebra is called a Heyting algebra and can be regarded as the birth of quantum

mechanics. Dual to this is the notion of a coHeyting algebra in which we relax

the law that a ∩ ã = 0. In such an algebra one can define the ‘boundary’ of a

proposition as

∂a = a ∩ ã

and show that it behaves like a derivation. This is surely the birth of geome-

try. How exactly this complementation duality extends to the Fourier duality

for groups and on to the duality between more complex geometries and quan-

tum theory is not completely understood, but there are conceptual ‘physical’

argument that this should be so, put forward in [1].

Briefly, in the simplest ‘theories of physics’ based only on logic one can work

equally well with ‘apples’ or ‘not-apples’ as the names of subsets. What happens
to this complementation duality in more advanced theories of physics? Apples

curve space while not-apples do not, i.e. in physics one talks of apples as really

existing while not-apples are merely an abstract concept. Clearly the self-duality

is lost in a theory of gravity alone. But we have argued[1] that when one considers

both gravity and quantum theory the self-duality can be restored. Thus when we

say that a region is as full of apples as General Relativity allows (more matter

simply forms a black hole which expands), which is the right hand limiting

line in Figure 31, in the dual theory we might say that the region is as empty

of not-apples as quantum theory allows, the limitation being the left slope in

Figure 3. Here the uncertainty principle in the form of pair creation ensures

that space cannot be totally empty of ‘particles’. Although heuristic, these are

arguments that quantum theory and gravity are dual and that this duality is an

extension of complementation duality. Only a theory with both would be self-

dual. Also, in view of a ‘hole’ moving in the opposite direction to a particle, the

dual theory should also involves time reversal. The self-duality is something like
CPT invariance but in a theory where gravitational and not only quantum effects

are considered. We are proposing it as a key requirement for quantum-gravity.

1 Diagrams similar to the right hand side of Figure 3 plotting the mass-energy density
v size have been attributed to Brandon Carter (who was here at the conference), as
a tool to plot stellar evolution
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2.4 Relative realism

So far we have given arguments that there is at least a correlation between the
mathematical structure of self-dual structures and the progressive theories of
physics from their birth in ‘logic’ to the projected forthcoming complete theory
of everything. It should at least provide a guide to the properties that should be
central in unknown theories of everything, such as what have become fashionable
to call ‘M-theory’.

What about going further? This section will indeed be speculative but I be-
lieve it should be considered. Suppose indeed that some mathematical-structural
principles (such as the principle of representation theoretic self-duality above)
could exactly pin down the ultimate theory of physics along the lines discussed.
This would be like giving a list of things that we expect from a complete theory
– such as renormalisability, CPT-invariance, etc., except that we are consider-
ing such general versions of these ‘constraints’ that they are practically what it
means to be a group of people following the scientific method. If this really pins
down the ultimate theory then it means that the ultimate theory of physics is
no more and no less than a self-discovery of the constraints in thinking that are
taken on when one decides to look at the world as a physicist.

If this sounds cynical it is not meant to be; it is merely a Kantian or Hegelian
basis of physical reality as opposed the more conventional reductionist one that
most physicists take for granted. It does not mean that physics is arbitrary or
random any more than the different possible manifolds ‘out there’ are arbitrary.
The space of all possible manifolds up to equivalence has a deep and rich struc-
ture and feels every bit as real to anyone who studies it; but it is a mathematical
reality ‘created’ when we accept the axioms of a manifold. So what we are saying
is that there is not such a fundamental difference between mathematical reality
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and physical reality. The main difference is that mathematicians are aware of
the axioms while physicists tend to discover them ‘backwards’ by theorising from
experience. I call this point of view relative realism[1]. In it, we experience reality
through choices that we have forgotten about at any given moment. If we become
aware of the choice the reality it creates is dissolved or ‘unconstructed’. On the
other hand, the reader will say that the possibility of the theory of manifolds –
that the game of manifold-hunting could have been played in the first place – is
itself a reality, not arbitrary. It is, but at a higher level: it is a concrete fact in
a more general theory of possible axiom systems of this type. To give another
example, the reality of chess is created once we chose to play the game. If we are
aware that it is a game, that reality is dissolved, but the rules of chess remain a
reality although not within chess but in the space of possible board games. This
gives a tree-like or hierarchical structure of reality. Reality is experienced as we
look down the tree while ‘awareness’ or enlightenment is achieved as we look up
the tree. When we are born we take on millions and millions of assumptions or
rules through communication, which creates our day to day perception of reality,
we then spend large parts of our lives questioning and attempting to unconstruct
these assumptions as we seek understanding of the world.

Ten years ago I would have had to apologise to the reader for presenting such
a philosophy or ‘metamodel’ of physics but, as mentioned in the Introduction,
now that theories of everything are beginning to be bandied about I do believe
it is time to give deeper thought to these issues. As a matter of fact the paper
[1] on which most of Section 2 is based was submitted in 1987 to the Canadian
Philosophy of Science Journal where a very enthusiastic referee conditionally
accepted the paper but insisted that the arguments were basically Kantian and
that I had to read Kant.2 Kant basically said that reality was a product of human
thought. From this perspective the fact that life appears somewhere near the
middle of Figure 3, apart from the obvious explanation that phenomena become
simpler as we approach the boundaries hence most complex in the middle so this
is statistically where life would develop, has a different explanation: we created
our picture of physical reality around ourselves and so not surprisingly we are
near the middle.

3 Fourier theory

It is now high time to turn from philosophy to more mathematical considera-
tions. We give more details about Fourier duality and in particular how it leads
to quantum groups as a concrete ‘toy model’ setting to explore the above ideas.
At the same time it should be clear from the general nature of the discussion
above that quantum groups and even noncommutative geometry itself are only
relatively simple manifestations of even more general ideas that might be ap-
proached along broadly similar lines.

2 I duly spent the entire summer of 1989 reading up Kant and revising the paper; after
which the referee rejected the paper with the immortal words ‘now that the basic
structure of the author’s case is more exposed I do not find it clarified’ !
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First of all, usual Fourier theory on R is a pairing of two groups, position
x and momentum p. The momentum here labels the characters on R, i.e the
elements of the dual group R̂. The corresponding character is the plane wave

χp(x) = eıxp

The group R̂ has its group structure given by pointwise multiplication

χpχp′(x) = χp(x)χp′(x) = χp+p′(x)

which is therefore isomorphic to R as the addition of momentum. Moreover, the
situation is symmetrical i.e. one could regard the same plane waves as characters
χx(p) on momentum space. The Fourier transform is a map from functions on

R to functions on R̂,

F(f)(p) =

∫
dxf(x)χp(x)

3.1 Loop variables and Fourier duality

It is well-known that these ideas work for any locally compact Abelian group. The
local-compactness is needed for the existence of a translation-invariant measure.
As physicists we can also apply these ideas formally for other groups pretending
that there is such a measure. For example in [20][21][22][23] we proposed a Fourier
theory approach to the quantisation of photons as follows. The elements κ of the
group are disjoint unions of oriented knots (i.e. links) with a product law that
consists of erasing any overlapping segments of opposite orientation. The dual
group is A/G of U(1) bundles and (distributional) connections A on them. Thus
given any bundle and connection, the character is the holonomy

χA(κ) = eı
R
κ
A.

We considered this set-up in and the inverse Fourier transform of some well-
known functions on A/G as functions on the group of knots. For example[22],

F−1(CS)(κ) =

∫
dA CS(A)e−ı

R
κ
A = e

ı
2α link(κ,κ) (6)

F−1(Max)(κ) =

∫
dA Max(A)e−ı

R
κ
A = e

ı
2β ind(κ,κ) (7)

where

CS(A) = e
αı
2

R
A∧dA, Max(A) = e

βı
2

R ∗dA∧dA

are the Chern-Simmons and Maxwell actions, link denotes linking number, ind
denotes mutual inductance.
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The diagonal ind(κ, κ) is the mutual self-inductance i.e. you can literally cut
the knot, put a capacitor and measure the resonant frequency to measure it. By
the way, to make sense of this one has to use a wire of a finite thickness – the self-
inductance has a log divergence. This is also the log-divergence of Maxwell theory
when one tries to make sense of the functional integral, i.e. renormalisation has
a clear physical meaning in this context[22].

Meanwhile, link(κ, κ) is the self-linking number[20][21][22] of a knot with
itself, defined as follows. First of all, between two disjoint knots link(κ, κ′) is
the linking number as usual. We then introduce the following regularised linking
number

linkε(κ, κ
′) =

∫
||�||<ε

d3ε link(κ, κ′
�
)

where κ′
�

is the knot displaced by the vector ε. The integrand is defined almost
everywhere and hence integrable. Finally, we define the linking number as the
limit of this as ε → 0, which is now defined even when knots touch or even on
the same knot. At the time of [20][21][22], actually back in 1986, I made the
following conjecture which is still open.

Conjecture 1. Intersections that are worse and worse (i.e. so that higher and
higher derivatives coincide at the point of intersection) contribute fractions with
greater and greater denominators to the regularised linking number, but the
linking number remains in Q. In the extreme limit of total overlap the self-
linking number is a generic element of R.

As evidence, if the knots intersect transversally then it is easy to see that
one obtains for the regularised linking an integer ±1

2 . This is just because half
the displacements will move one knot in to link more with the other, and the
other half to unlink. 3 Although the conjecture remains open, it does appear
that it could be interesting for loop variable quantum gravity where it would
imply certain rationality properties. By the way, one might need to average over
infinitesimal rotations as well as displacements to prove it.

Note also that our point of view in [20][21][22] was distributional because
as well as considering honest smooth connections we considered ‘connections’
defined entirely by their holonomy. In particular, given a knot κ we defined the
distribution Aκ by its character as

eı
R
κ′ Aκ = eılink(κ,κ′).

Such distributions are quite interesting. For example[21][23] if one formally eval-
uates the Maxwell action in these one has[20]

Max(Aκ) = e
ı

4β δ
2(0)

R
κ

dtκ̇·κ̇, (8)

3 This result for transverse intersections, the regularised linking itself and the conjec-
ture for higher intersections were shown to Abbay Ashtekar (and Lou Kauffman)
during the ICAMP meeting in Swansea 1988 in advance of the eventual publication
in [22].
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the Polyakov string action. In other words, string theory can be embedded into
Maxwell theory by constraining the functional integral to such ‘vortex’ configu-
rations. An additional Chern-Simons term becomes similarly a ‘topological mass
term’ link(κ, κ) that we proposed to be added to the Polyakov action.

Finally, these ideas also have analogues in the Hamiltonian formulation. Thus
the CCR’s for the gauge field can be equivalently formulated as

[

∫
κ

A,

∫
Σ

E] = 4πıαlink(κ, ∂Σ)

which is a signed sum of the points of intersection of the loop with the surface.
This is the point of view by which loop variables were introduced in physics
in the 1970’s (as an approach to QCD on lattices) by Mandelstam and others.
We have observed in [20] that this has an interpretation as noncommutative
geometry, generalising the noncommutative torus vnum = eıαmnumvn to

vκuκ′ = e4πıαlink(κ,κ′)uκ′vκ (9)

where integers are replaced by knots or links. Here the physical picture is

uκ = eı
R
κ
A, vκ = eı

R
κ
Ã (10)

where Ã is a dual connection such that E = dÃ. So constructing the u, v is
equivalent to constructing some distributional operators A,E with the usual
CCR’s. This point of view from [20][21] was eventually published in [23] as a
noncommutative-geometric approach to the quantisation of photons.

It is also an interesting question how all of these ideas generalise from U(1)
to nonAbelian groups. Thus, in place of the Abelian group of knots one can
first of all consider some kind of nonAbelian group of parameterized loops in
the manifold, i.e. maps rather than the images of these maps. (The inequivalent
classes of elements in this are the fundamental group π1 of the manifold.) This
should be paired via the Wilson loop or holonomy with nonAbelian bundles
and connections. The precise groups and their duality here is a little hazy but
one should think of this roughly speaking as what goes on in the construction
of knot invariants from the WZW model (or from quantum group). Thus one
could argue[21][22] that the relationship between the Jones polynomial J and
SU2-Chern-Simons theory should be viewed as some kind of nonAbelian Fourier
transform

F−1(CSSU2)(κ) ∼ eJ(κ) (11)

with the Jones polynomial in the role of self-linking number4. We will discuss
Fourier transform on nonAbelian groups in the next section using quantum group
methods, though I should say that it still remains to make (11) precise along such

4 This conjecture dates from 1986 at the time of [20] but was not published until [22],
following Witten’s discovery of the relation between the WZW model and the Jones
polynomial at the ICAMP in Swansea in 1988
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lines. The reformulation of quantum group invariants as Vassiliev invariants and
the Kontsevich integrals (which generalise the linking number) could be viewed,
however, as a perturbative step in this direction.

It does seems that many of these ideas have emerged in modern times in the
loop variable approach to quantum gravity[24][25], with the nonAbelian group
SU2 (or another group) in place of U(1). However, I want to close this section
with some ideas in this area that I still did not see emerge. Indeed, what the
loop variable approach tells us is that the gravitational field when recast as a
spin connection is in some sense the conjugate variable to something of mani-
fest topological and diffeomorphism-invariant meaning – knots and links in the
manifold. In the same spirit it is obvious that scaler fields correspond to points
in the manifold[21][23]. What about in the other direction? I would conjecture
that there is another field or force in nature (possibly as yet undiscovered) cor-
responding to surfaces rather than loops (and so on). Then just as gauge fields
tend to detect π1, the new field would for example detect π2. Note that in the
U(1) case the pairing of surfaces is of course with 2-forms (and the 2nd coho-
mology is the Abelianisation of π2) – we would need a nonAbelian version of
that.

Actually this conjecture was one of my main motivations back in 1986 in
the slightly different context of a search for such Fourier transform or ‘surface
transport’ methods for QCD. First of all, one can ask: if the Fourier transform
of the nonAbelian Chern-Simons theory gives the quantum group link invariants
as in (11), what is the Fourier transform of the Yang-Mills action? According
to (7) it should be some kind of some kind of ‘nonAbelian self-inductance’. The
extra ingredient in QCD is of course confinement. Related to this is the need for
some kind of ‘nonAbelian Stokes theorem’. While no continuum version of the
latter exists, let us suppose that is has somehow been defined, i.e. the Lie group
G-valued ‘parallel transport’ of a nonAbelian Lie-algebra valued 2-form F over
a surface such that if F is the curvature of a gauge field then

eı
R
Σ
F = eı

R
∂Σ

A. (12)

While this is not really possible (except rather artificially on a lattice by specify-
ing paths parallel transporting back to a fixed based point) we suppose something
like this.

Conjecture 2. With such a nonAbelian surface transport, the QCD vacuum ex-
pectation value of the flux of the quantized curvature F through a closed surface
is an invariant of the surface.

The point is that one usually considers only planar spans of loops in QCD
and Wilson’s criterion for confinement says that these are area law. On the other
hand if one considered a small planar loop spanned by a large surface ‘ballooning
out’ from the loop one would still expect some finite result (since a large area),
but on the other hand the boundary curve itself could be shrunk to zero so that
its planar spanning surface also shrinks to zero and Wilson’s criterion would
give 1. The conjecture is that these two effects cancel out and one has in fact
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something that depends only on the topological class of the surface. This does
require, however, making sense of (12) which might require some accompanying
new fields. On the other hand, at least one standard objection to the above
ideas was solved, namely we do not need to take traces of the holonomies etc.,
which means that we are considering the expectations of gauge-non-invariant
operators. It was argued in [26] that one could do this in the context of a version
of the background field method. This is important because one can then analyse
and prove confinement locally as the statement that the expectation < F > is a
(nonAbelian) curvature + a non-curvature part (the latter was shown in [26] to
be the skew-symmetrized gluon two-point function). The first part is ‘perimeter
law’ and the second is ‘area law’ and corresponds to confinement infinitesimally.
The conjecture would extend these ideas globally. At the end of the day, however,
the strong force itself might emerge as related to surfaces in much the same way
as gravity is to loops via the loop gravity and spin connection formalisms.

3.2 NonAbelian Fourier Transform

To generalise Fourier theory beyond Abelian groups we really have to pass to the
next more general self-dual category, which is that of Hopf algebras or quantum
groups. A Hopf algebra is

• A unital algebra H, 1 over the field C (say)
• A coproduct ∆ : H → H ⊗H and counit ε : H → C forming a coalgebra,

with ∆, ε algebra homomorphisms.
• An antipode S : H → H such that ·(S⊗ id)∆ = 1ε = ·(id⊗S)∆.

Here a coalgebra is just like an algebra but with the axioms written as maps
and arrows on the maps reversed. Thus coassociativity means

(∆⊗ id)∆ = (id⊗∆)∆ (13)

etc. The axioms mean that the adjoint maps ∆∗ : H∗ ⊗H∗ → H∗ and ε∗ : C →
H∗ make H∗ into an algebra. Here ε∗ is simply ε regarded as an element of H∗.
The meaning of the antipode S is harder to explain but it generalises the notion
of inverse. It is a kind of ‘linearised inversion’.

For a Hopf algebra, at least in the finite-dimensional case (i.e. with a suitable
definition of dual space in general) the axioms are such that H∗ is again a Hopf
algebra. Its coproduct is the adjoint of the product of H and its counit is the
unit of H regarded as a map on H∗. This is why the category of Hopf algebras
is a self-dual one. For more details we refer to [6].

We will give examples in a moment, but basically these axioms are set up to
define Fourier theory. Thinking of H as like ‘functions on a group’, the coprod-
uct corresponds to the group product law by dualisation. Hence a translation-
invariant integral means in general a map

∫
: H → C such that

(

∫
⊗ id)∆ = 1

∫
(14)
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Meanwhile, the notion of plane wave or exponential should be replaced by the
canonical element

exp =
∑
a

ea⊗ fa ∈ H ⊗H∗ (15)

where {ea} is a basis and {fa} is a dual basis. We can then define Fourier
transform as

F : H → H∗, F(h) =

∫
(exp)h = (

∫ ∑
a

eah)fa. (16)

There is a similar formula for the inverse H∗ → H .
The best way to justify all this is to see how it works on our basic example

for Fourier theory. Thus, we take H = C [x] the algebra of polynomials in one
variable, as the coordinate algebra of R. It forms a Hopf algebra with

∆x = x⊗ 1 + 1⊗x, εx = 0 Sx = −x (17)

as an expression of the additive group structure on R. Similarly we take C [p]
for the coordinate algebra of another copy of R with generator p dual to x (the
additive group R is self-dual).

Example 1. The Hopf algebras H = C [x] and H∗ = C [p] are dual to each other
with 〈xn, pm〉 = (−ı)nδn,mn! (under which the coproduct of one is dual to the
product of the other). The exp element and Fourier transform is therefore

exp =
∑
ın
xn⊗ pn
n!

= eıx⊗ p, F(f)(p) =

∫ ∞

−∞
dxf(x)eıx⊗ p.

Apart from an implicit ⊗ symbol which one does not usually write, we recover
usual Fourier theory. Both the notion of duality and the exponential series are
being treated a bit formally but can be made precise.

Let is now apply this formalism to Fourier theory on classical but nonAbelian
groups. We use Hopf algebra methods because Hopf algebras include both groups
and group duals even in the nonAbelian case, as we have promised in Section 2.
Thus, if g is a Lie algebra with associated Lie group G, we have two Hopf
algebras, dual to each other. One is U(g) the enveloping algebra with

∆ξ = ξ⊗ 1 + 1⊗ ξ, ξ ∈ g

and the other is the algebra of coordinate functions C (G). If G is a matrix group
the functions tij which assign to a group element its ij matrix entry generate
the coordinate algebra. Of course, they commute i.e. C (G) is the commutative
polynomials in the tij modulo some other relations that characterise the group.
Their coproduct is

∆tij = tik⊗ tkj
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corresponding to the matrix multiplication or group law. The pairing is

〈tij , ξ〉 = ρ(ξ)ij

where ρ is the corresponding matrix representation of the Lie algebra. The canon-
ical element or exp is given by choosing a basis for U(g) and finding its dual
basis.

Example 2. H = C (SU2 ) = C [a, b, c, d] modulo the relation ad − bc = 1 (and
unitarity properties). It has coproduct

∆a = a⊗a+ b⊗ c, etc., ∆

(
a b
c d

)
=

(
a b
c d

)
⊗
(
a b
c d

)
.

It is dually paired with H∗ = U(su2) in its antihermitian usual generators {ei}
with pairing

〈
(
a b
c d

)
, ei〉 =

ı

2
σi,

defined by the Pauli matrices. Let {ea1eb2ec3} be a basis of U(su2) and {fa,b,c}
the dual basis. Then

exp =
∑
a,b,c

fa,b,c⊗ ea1eb2ec3 ∈ C (SU2 )⊗̄U(su2)

F(f) =

∫
SU2

duf(u)fa,b,c(u)⊗ ea1eb2ec3.

Here du denotes the right-invariant Haar measure on SU2. For a geometric
picture one should think of ei as noncommuting coordinates i.e. regard U(su2) as
a ‘noncommutative space’ as in (3). An even simpler example is the Lie algebra
b+ with generators x, t and relations [x, t] = ıλx. Its enveloping algebra could
be viewed as a noncommutative analogue of 1+1 dimensional space-time.

Example 3. c.f. [27] The group B+ of matrices of the form(
eλω k
0 1

)

has coordinate algebra C (B+ ) = C [k, ω] with coproduct

∆eλω = eλω⊗ eλω, ∆k = k⊗ 1 + eλω⊗ k

Its duality pairing with U(b+) is generated by 〈x, k〉 = −ı, 〈t, ω〉 = −ı and the
resulting exp and Fourier transform are

exp = eıkωeıωt, F(: f(x, t) :) =

∫ ∞

−∞

∫ ∞

−∞
dxdt eıkxeıωtf(eλωx, t)

where : f(x, t) :∈ U(b+) by normal ordering x to the left of t.
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Similarly (putting a vector x in place of x) the algebra [x, t] = ıλx is merely
the enveloping algebra of the Lie algebra of the group R:<Rn introduced (for
n = 2) in [28] and could be viewed as some kind of noncommutative space-time
in 1 + n dimensions. This was justified in 1+3 dimensions in [29], where it was
shown to be the correct ‘kappa-deformed’ Minkowski space covariant under a
‘kappa-deformed’ Poincaré quantum group which had been proposed earlier[30].
We see that Fourier transform then connects it to the classical coordinate algebra
C (R:<Rn ) of the nonAbelian group R:<Rn , this time with commuting coordi-
nates (k, ω). This demonstrates in detail what we promised that noncommu-
tavity of spacetime is related under Fourier transform to nonAbelianness (which
typically means curvature) of the momentum group. Under Fourier theory it
means that all noncommutative geometrical constructions and problems on this
spacetime can be mapped over and solved as classical geometrical constructions
on the nonAbelian momentum space.

This Fourier transform approach was demonstrated recently in [31], where
we analyse the gamma-ray burst experiments mentioned in Giovanni Amelino-
Camelia’s lectures at the conference, from this point of view. In contrast to
previous suggestions[32] (based on the deformed Poincaré algebra) we are able
to justify the dispersion relation

λ−2
(
eλω + e−λω − 2

)
− k2e−λω = m2 (18)

as a well-defined mass-shell in the classical momentum group R:<R3 and give
some arguments that the plane waves being of the form eık·xeıωt above would
have wave velocities given by vi = ∂ω

∂ki
(no meaningful justification for this of

any kind had been given before). In particular, one has a variation in arrival
time for a gamma ray emitted a displacement L away

δT = − (L + Tv)

ω
· δk (19)

as one varies the momentum by δk. Apparently such theoretical predictions can
actually be measured for gamma ray bursts that travel cosmological distances.
Of course, one needs to know the distance L and use the predicted L-dependence
to filter out other effects and also to filter out our lack of knowledge of the initial
spectrum of the bursts. It is also conjectured in [31] that the nonAbelianness
of the momentum group shows up as CPT violation and might be detected by
ongoing neutral-kaon system experiments. Of course, there is nothing stopping
one doing field theory in the form of Feynman rules on our classical momentum
group either, except that one has to make sense of the meaning of nonAbelianess
in the addition of momentum. As explained in Section 2 one can use similar
techniques to those for working on curved position space, but now in momentum
space, i.e. I would personally call such effects, if detected, ‘cogravity’. The idea
is that quantum gravity should lead to both gravitational and these more novel
cogravitational effects at the macroscopic level.

Let us note finally that these nonAbelian Fourier transform ideas also work
fine for finite groups and could be useful for crystallography.
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4 Bicrossproduct model of Planck-scale physics

So far we have only really considered groups or their duals, albeit nonAbelian
ones. The whole point of Hopf algebras, however, is that there exist examples
going truly beyond these but with many of the same features, i.e. with properties
of groups and group duals unified. It is high time to give some examples of Hopf
algebras going beyond groups and group duals i.e. neither commutative like C (G)
not the dual concept (cocommutative) like U(g), i.e. genuine quantum groups.

We recall from Section 2 that the unification of groups and group duals is
a kind of microcosm or ‘toy model’ of the problem of unifying quantum theory
and gravity. So our first class of quantum groups (the other to be described in a
later section) come from precisely this point of view.

4.1 The Planck-scale quantum group

By ‘toy model’ we mean of course some kind of effective theory with stripped-
down degrees of freedom but incorporating the idea that Planck scale effects
would show up when we try to unify quantum mechanics and geometry through
noncommutative geometry. But actually our approach can make a much stronger
statement than this: we envisage that the model appears as some effective limit
of an unknown theory of quantum-gravity which to lowest order would appear as
spacetime and conventional mechanics on it – but even if the theory is unknown
we can use the intrinsic structure of noncommutative algebras to classify a priori
different possibilities. This is much as a phenomenologist might use knowledge
of topology or cohomology to classify different a priori possible effective La-
grangians.

Specifically, if H1, H2 are two quantum groups there is a theory of the space
Ext0(H1, H2) of possible extensions

0 → H1 → E → H2 → 0

by some Hopf algebra E obeying certain conditions. We do not need to go into
the mathematical details here but in general one can show that E = H1I�H2 a
‘bicrossproduct’ Hopf algebra. Suffice it to say that the conditions are ‘self-dual’
i.e. the dual of the above extension gives

0 → H∗
2 → E∗ → H∗

1 → 0

as another extension dual to the first, in keeping with our philosophy of self-
duality of the category in which we work. We also note that by Ext0 we mean
quite strong extensions. There is also a weaker notion that admits the possibili-
ties of cocycles as well, which we are excluding, i.e. this is only the topologically
trivial sector in a certain nonAbelian cohomology.

Theorem 1. [3][16] Ext0(C [x], C [p]) = R~ ⊕ RG, i.e. the different extensions

0 → C [x] →? → C [p] → 0
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of position C [x] by momentum C [p] forming a Hopf algebra are classified by two
parameters which we denote ~,G and take the form

?∼=C [x]I�~,GC [p].

Explicitly this 2-parameter Hopf algebra is generated by x, p with the relations
and coproduct

[x, p] = ı~(1 − e− x
G ), ∆x = x⊗ 1 + 1⊗x, ∆p = p⊗ e− x

G + 1⊗ p.

This is called the Planck scale quantum group. It is a bit more than just some
randomly chosen deformation of the coordinate algebra of the usual group R2 of
phase space of a particle in one dimension: in physical terms what we are saying is
that if we are given C [x] the position coordinate algebra and C [p] defined a priori
as the natural momentum coordinate algebra then all possible quantum phases
spaces built from x, p in a controlled way that preserves duality ideas (Born
reciprocity) and retains the group structure of classical phase space as a quantum
group are of this form labeled by two parameters ~,G. We have not put these
parameters in by hand – they are simply the mathematical possibilities being
thrown at us. In effect we are showing how one is forced to discover both quantum
and gravitational effects from certain structural self-duality considerations.

The only physical input here is to chose suggestive names for the two pa-
rameters by looking at limiting cases. We also should say what we mean by
‘natural momentum coordinate’. What we mean is that the interpretation of
p should be fixed before hand, e.g. we stipulate before hand that the Hamil-
tonian is h = p2/2m for a particle on our quantum phase space. Then the
different commutation relations thrown up by the mathematical structure imply
different dynamics. If one wants to be more conventional then one can define
p̃ = p(1 − e− x

G )−1 with canonical commutation relations but some nonstandard
Hamiltonian,

[x, p̃] = ı~, h =
p̃2

2m
(1 − e− x

G )2.

Thus our approach is slightly unconventional but is motivated rather by the
strong principle of equivalence that from some point of view the particle should
be free. We specify x, p before-hand to be in that frame of reference and then
explore their possible commutation relations. Of course the theorem can be ap-
plied in other contexts too whenever the meaning of x, p is fixed before hand,
perhaps by other criteria.

The quantum flat space G → 0 limit Clearly in the domain where x can be
treated as having values > 0, i.e. for a certain class of quantum states where the
particle is confined to this region, we clearly have flat space quantum mechanics
[x, p] = ı~ in the limit G → 0.
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The classical ~ → 0 limit On the other hand, as ~ → 0 we just have the
commutative polynomial algebra C [x, p] with the coalgebra shown. This is the
coordinate algebra of the group B− of matrices of the form(

e−
x
G 0
p 1

)

which is therefore the classical phase space for general G of the system.

The dynamics The meaning of the parameter G can be identified, at least
roughly, as follows. In fact the meaning of p mathematically in the construction
is that it acts on the position R inducing a flow. For such dynamical systems the
Hamiltonian is indeed naturally h = p2/m and implies that

ṗ = 0, ẋ =
p

m

(
1 − e− x

G

)
+O(~) = v∞

(
1 − 1

1 + x
G + · · ·

)
+O(~)

where we identify p/m to O(~) as the velocity v∞ < 0 at x = ∞. We see that
as the particle approaches the origin it goes more and more slowly and in fact
takes an infinite amount of time to reach the origin. Compare with the formula
in standard radial infalling coordinates

ẋ = v∞

(
1 − 1

1 + 1
2
x
G

)

for the distance from the event horizon of a Schwarzschild black hole with

G =
GNewtonM

c2
,

where M is the background gravitational mass and c is the speed of light. Thus
the heuristic meaning of G in our model is that it measures the background mass
or radius of curvature of the classical geometry of which our Planck scale Hopf
algebra is a quantisation.

These arguments are from [3]. Working a little harder, one finds that the
quantum mechanical limit is valid (the effects of G do not show up within one
Compton wavelength) if

mM << m2
Planck,

while the curved classical limit is valid if

mM >> m2
Planck.

See also [6]. The Planck-scale quantum group therefore truly unifies quantum
effects and ‘gravitational’ effects in the context of Figure 3.

Of course our model is only a toy model and one cannot draw too many
conclusions given that our treatment is not even relativistic. The similarity to
the Schwarzschild black-hole is, however, quite striking and one could envisage
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more complex examples which hit that exactly on the nose. The best we can

say at the moment is that the search to unify quantum theory and gravity using

such methods leads to tight constraints and features such as event-horizon-like

coordinate singularities. Theorem 1 says that it is not possible to make a Hopf

algebra for x, p with the correct classical limit in this context without such a

coordinate singularity.

The quantum-gravity ~,G → ∞, G
~
= λ limit Having analysed the two

familiar limits we can consider other ‘deep quantum-gravity’ limits. For example

sending both our constants to ∞ but preserving their ratio we have

[x, p] = ıλx, ∆x = x⊗ 1 + 1⊗x, ∆p⊗ 1 + 1⊗p

which is once again U(b+) regarded as in Example 3 in Section 3 ‘up side down’ as

a quantum space. The higher-dimensional analogues are ‘κ-deformed’ Minkowski

space[29] as explained in Section 3, i.e. the Planck-scale quantum group puts

some flesh on the idea that this might indeed come out of quantum gravity as

some kind of effective limit[27]. Time itself would have to appear as t = p, (or

t =
∑

i pi for the higher dimensional analogues) in this limit from the momenta

conjugate in the effective quantum gravity theory to the position coordinates.

This speculative possibility is discussed further in [31]. At any rate this deformed

Minkowski space is at least mathematically nothing but a special limit of the

Planck-scale quantum group from [3]. It gives some idea how the self-duality

ideas of Section 2 might ultimately connect to testable predictions for Planck

scale physics e.g. testable by gamma-ray bursts of cosmological origin.

The algebraic structure and Mach’s Principle The notation C [x]I�C [p]

for the Planck-scale quantum group reflects its algebraic structure. As an algebra

it is a cross product C [x]>�C [p] by the action : of C [p] on C [x] by

p:f(x) = −ı~(1 − e−x
G )
∂

∂x
f (20)

which means that it is a more or less standard ‘Mackey quantisation’ as a dynam-

ical system. It can also be viewed as the deformation-quantization of a certain

Poisson bracket structure on C (B− ) if one prefers that point of view. On the

other hand its coproduct is obtained in a similar but dual way as a semidirect

coproduct C [x]I<C [p] by a coaction of C [x] on C [p]. This coaction is induced

by an action of x on functions f(p) of similar form to the above but with the

roles reversed. In other words, matching the action of momentum on position is

an ‘equal and opposite’ coaction of position back on momentum. This is indeed

inspired by the ideas of Mach[16] as was promised in Section 2.
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Observable-state duality and T-duality The phrase ‘equal and opposite’
has a precise consequence here. Namely the algebra corresponding to the coal-
gebra by dualisation has a similar cross product form by an analogous action of
x on p. More precisely, one can show that

(C [x]I�~,GC [p])∗∼=C [p̄]:J 1
~
, G
~

C [x̄ ], (21)

where C [p]∗ = C [x̄ ] and C [x]∗ = C [p̄] in the sense of an algebraic pairing as in
Example 1 in Section 3. Here 〈p, x̄〉 = ı etc., which then requires a change of
the parameters as shown to make the identification precise. So the Planck-scale
quantum group is self-dual up to change of parameters.

This means that whereas we would look for observables a ∈ C [x]I�C [p] as
the algebra of observables and states φ ∈ C [p̄]:JC [x̄ ] as the dual linear space,
with φ(a) the expectation of a in state φ (See section 2.2), there is a dual
interpretation whereby

Expectation = φ(a) = a(φ)

for the expectation of φ in ‘state’ a with C [p̄]:JC [x̄ ] the algebra of observables
in the dual theory. More precisely, only self-adjoint elements of the algebra are
observables and positive functionals states, an a state φ will not be exactly
hermitian in the dual theory etc. But the physical hermitian elements in the
dual theory will be given by combinations of such states, and vice versa. This is
a concrete example of observable-state duality as promised in Section 2. It was
introduced by the author in [3].

Also conjectured at the time of [3] was that this duality should be related
to T -duality in string theory. As evidence is the inversion of the constant ~. In
general terms coupling inversions are indicative of such dualities. Notice also
that Fourier transform implements this T-duality-like transformation as

F : C [x]I�~,GC [p] → C [p̄]:J 1
~
, G
~

C [x̄ ]

Explicitly, it comes out as[27]

F(: f(x, p) :) =

∫ ∞

−∞

∫ ∞

−∞
dxdp e−ı(p̄+

ı
G )xe−ıx̄(p+p#)f(x, p), (22)

where : is the action (20) and f(x, p) is a classical function considered as defining
an element of the Planck-scale quantum group by normal ordering x to the left.

The duality here is not exactly T-duality in string theory but has some
features like it. On the other hand it is done here at the quantum level and not
in terms only of Lagrangians. In this sense the observable state duality can give
an idea about what should be ‘M-theory’ in string theory. Thus, at the moment
all that one knows really is that the conjectured M-theory should be some form
of algebraic structure with the property that it has different semiclassical limits
with different Lagrangians related to each other by S,T dualities (etc.) at the
classical level. Our observable-state duality ideas [3][1][19] as well as more recent
work on T-duality suggests that:
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Conjecture 3. M-theory should be some kind of algebraic structure possessing
one or more dualities in a representation-theoretic or observable-state sense.

Actually there is an interesting anecdote here. I once had a chance to explain
the algebraic duality ideas of my PhD thesis to Edward Witten at a reception in
MIT in 1988 after his colloquium talk at Harvard on the state of string theory. He
asked me ‘is there a Lagrangian’ and when I said ‘No, it is all algebraic; classical
mechanics only emerges in the limits, but there are two different limits related by
duality’, Witten rightly (at the time) gave me a short lecture about the need for
a Lagrangian. 9 years later I was visiting Harvard and Witten gave a similarly-
titled colloquium talk on the state of string theory. He began by stating that
there was some algebraic structure called M-theory with Lagrangians appearing
only in different limits.

The noncommutative differential geometry The lack of Lagrangians and
other familiar structures in the full Planck-scale theory was certainly a valid crit-
icism back in 1988. Since then, however, noncommutative geometry has come
a long way and one is able to ‘follow’ the geometry as we quantise the system
using these modern techniques. We do not have the space to recall the whole
framework but exterior algebras, partial derivatives etc., make sense for quan-
tum groups and many other noncommutative geometries. For the Planck-scale
quantum group one has[27],

∂p : f(x, p) :=
G

ı~
: (f(x, p) − f(x, p− ı~

G
)) :, (23)

∂x : f(x, p) :=:
∂

∂x
f : − p

G
∂p : f : (24)

which shows the effects of ~ in modifying the geometry. Differentiation in the p
direction becomes ‘lattice regularised’ albeit a little strangely with an imaginary
displacement. In the deformed-Minkowski space setting where p = t it means
that the Euclidean version of the theory is related to the Minkowski one by a
Wick-rotation is being lattice-regularised by the effects of ~.

Also note that for fixed ~ the geometrical picture blows up when G → 0. I.e
the usual flat space quantum mechanics CCR algebra does not admit a defor-
mation of conventional differential calculus on R

2 – one needs a small amount
of ‘gravity’ to be present for a geometrical picture in the quantum theory. This
is also evident in the exterior algebra[27]

fdx = (dx)f, fdp = (dp)f +
ı~

G
df

for the relations between ‘functions’ f in the Planck-scale quantum group and
differentials. The higher exterior algebra looks more innocent with

dx ∧ dx = 0, dx ∧ dp = −dp ∧ dx, dp ∧ dp = 0 (25)
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Starting with the differential forms and derivatives, one can proceed to gauge
theory, Riemannian structures etc., in some generality. One can also write down
‘quantum’ Poisson brackets and Hamiltonians[27] and (in principle) Lagrangians
in the full noncommutative theory. Such tools should help to bridge the gap
between model building via classical Lagrangians, which I personally do not
think can succeed at the Planck scale, and some of the more noncommutative-
algebraic ideas in Section 2.

4.2 Higher dimensional analogue

The Planck-scale quantum group is but the simplest in a family of quantum
groups with similar features and parameters. We work from now with G = ~ = 1
for simplicity but one can always put the parameters back.

Of course one may take the n-fold tensor product of the Planck-scale quan-
tum group, i.e. generators xi, pi and different i commuting. However, in higher
dimensions the Ext0 is much bigger and I do not know of any full computation
of all the possibilities for n > 1. More interesting perhaps are some genuinely
different higher-dimensional examples along similar but nonAbelian lines, one of
which we describe now. The material is covered in [6], so we will be brief.

Thus, also from 1988, there is a bicrossproduct quantum group

C (R:<R2 )I�U(su2) (26)

constructed in [28][33] (actually as a Hopf-von Neumann algebra; here we con-
sider only the simpler algebraic structure underlying it.)

The nonAbelian group R:<R2 is the one whose enveloping algebra we have
considered in Example 3 in Section 3 as noncommutative spacetime. Here, how-
ever, we take it with a Euclidean signature and a different notation. Explicitly,
it consists of 3-vectors s with third component s3 > −1 and with the ‘curved
R

3 ’ nonAbelian group law

s · t = s + (s3 + 1)t.

Its Lie algebra is spanned by x0, xi with relations [xi, x0] = xi for i = 1, 2 as
discussed before (this is how this algebra appeared first, in [28], in connection
this higher-dimensional version of the Planck-scale quantum group). Now, on
the group R:<R2 there is an action of SU2 by a deformed rotation. This is
shown in Figure 4. The orbits are still spheres but non-concentrically nested and
accumulating at s3 = −1. This is a dynamical system and (26) is its Mackey
quantisation as a cross product. We see that we have similar features as for the
Planck-scale quantum group, including some kind of coordinate singularity as
s3 = −1.

At the same time there is a ‘back reaction’ of R:<R2 back on SU2, which
appears as a coaction of C (R:<R2 ) on U(su2) in the cross coalgebra structure
of the quantum group. Therefore the dual system, related by Fourier theory or
observable-state duality, is of the same form, namely

U(R:<R2 ):JC (SU2 ). (27)
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-1

s

s  ,

3

1 2s

Fig. 4. Deformed action of classical SU2 on R�<R
2

It consists of a particle on SU2 moving under the action of R:<R2 . This is the
dual system which, in the present case, looks quite different.

Finally, the general theory of bicrossproducts allows for a ‘Schroedinger rep-
resentation’ of (26) on U(R:<R2 ) and similarly of its dual on U(su2). Such a
picture means that the ‘wave functions’ live in these enveloping algebras viewed
as noncommutative spaces. There are also more conventional Hilbert space rep-
resentations as well.

4.3 General construction

There is a general construction for bicrossproduct quantum groups of which the
ones discussed so far are all examples. Thus suppose that

X = GM

is a factorisation of Lie groups. Then one can show that G acts on the set of
M and M acts back on the set of G such that X is recovered as a double
cross product (simultaneously by the two acting on each other) X∼=G:�M . This
turns out to be just the data needed for the associated cross product and cross
coproduct

C (M)I�U(g) (28)

to be a Hopf algebra. The roles of the two Lie groups is symmetric and the dual
is

(C (M)I�U(g))∗ = U(m):JC (G) (29)

which means that there are certain families of homogeneous spaces (the orbits of
one group under the other) which come in pairs, with the algebra of observables of
the quantisation of one being the algebra of expectation states of the quantisation
of the other. This is the more or less purest form of the ideas of Section 2 based
on Mach’s principle[16] and duality.
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On the other hand, factorisations abound in Nature. For example every com-
plexification of a simple Lie group factorises into its compact real form G and a
certain solvable group G�, i.e. GC = GG�. The notation here is of a modern ap-
proach to the Iwasawa decomposition in [28]. For example, SL2(C ) = SU2SU

�
2 ,

where SU�2 = R:<R2 , gives the bicrossproduct quantum group (26) in the pre-
ceding section. There are similar examples

C (G� )I�U(g) (30)

for all complex simple g. Also, slightly more general than the Iwasawa decompo-
sition but still only a very special case of a general Lie group factorisation, let G
be a Poisson-Lie group (a Lie group with a compatible Poisson-bracket). At the
infinitesimal level the Poisson bracket defines a map g → g⊗ g making g into a
Lie bialgebra. This is an infinitesimal idea of a quantum group and is such that
g
� is also a Lie algebra. In this setting there is a Drinfeld double Lie bialgebra
D(g) and its Lie group is an example of a factorisation GG�.

By the way, this is exactly the setting for nonAbelian Poisson-Lie T-duality
[12] in string theory, for classical σ-models on G and G�. The quantum groups
(30) and their duals are presumably related to the quantisations of the point-
particle limit of these sigma models. If so this would truly extend T-duality to
the quantum case via the above observable-state duality ideas. While this is
not proven exactly, something like this appears to be the case. Moreover, the
bicrossproduct duality for (28) is much more general and is not limited to such
Poisson-Lie structures on G. The group M need not be dual to G in the above
sense and need not even have the same dimension. Recently it was shown that
the Poisson-Lie T-duality in a Hamiltonian (but not Lagrangian) setting indeed
generalises to a general factorisation like this[13].

Finally, there is one known connection between the bicrossproduct quan-
tum groups and the more standard Uq(g) which we will consider next. Namely,
Lukierski et al.[30] showed that a certain contraction process turned Uq(so3,2)
in a certain limit to some kind of ‘κ-deformed’ Poincaré algebra as mentioned
below Example 3 in Section 3. It turned out later[29] that this was isomorphic
to one of the bicrossproduct Hopf algebras above,

κPoincare∼=C (R:<R3 )I�U(so3,1).

The isomorphism here is nontrivial (which means in particular that κ-Poincaré
certainly arose independently of the early bicrossproducts such as the 3 - dimen-
sional case (26)). On the other hand, the bicrossproduct version of κ-Poincaré
from [29] brought many benefits. First of all, the Lorentz sector is undeformed.
Secondly, the dual is easy to compute (being an example of the general self-
duality ideas above) and, finally, the Schroedinger representation means that
this quantum group indeed acts covariantly on U(R:<R3 ), which should there-
fore be viewed as the κ-Minkowski space appropriate to this κ-Poincaré (prior to
[29] one had only the noncovariant action of it on usual commutative Minkowski
space, leading to a number of inconsistencies in attempting to model physics
based on κ-Poincaré alone). Of course the point of view of Poincaré algebra as
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symmetry appears at first different from the main point of view of bicrossprod-
ucts as the quantisations of a dynamical system. However, as in Section 2 (and
even for the classical Poincaré algebra) a symmetry enveloping algebra should
also appear as part of (or all of) the quantum algebra of observables of the
associated quantum theory because it should be realised among the quantum
fields[14].

5 Deformed quantum enveloping algebras

No introduction to quantum groups would be complete if we did not also mention
the much more well known deformations Uq(g) of complex simple g arising from
inverse scattering and the theory of solvable lattice models[7][8]. These have not,
however, been very directly connected with Planck scale physics (although there
are some recent proposals for this, as we saw in the lectures of Lee Smolin). They
certainly did not arise that way and are not the quantum algebras of observables
of physical systems. Therefore this is only going to be a lightning introduction
to this topic. For more, see [6][10][34].

Rather, these quantum groups Uq(g) arise naturally as ‘generalised’ symme-
tries of certain spin chains and as generalised symmetries in the Wess-Zumino-
Witten model conformal field theory. Just as groups can be found as symmetries
of many different and unconnected systems, the same is true for the quantum
groups Uq(g). They do, however, have a perhaps richer and more complex mathe-
matical structure than the bicrossproducts, which is what we shall briefly outline.

As Hopf algebras one has the same duality ideas nevertheless. Thus, the
quantum group Uq(su2) with generators H,X± and relations and coproduct

[H,X±] = ±X±, [X+, X−] =
qH − q−H
q − q−1

∆X± = X±⊗ qH
2 + q

−H
2 ⊗X±, ∆H = H ⊗ 1 + 1⊗H

is dual to the quantum group C q (SU2) generated by a matrix of generators
a, b, c, d. This has six relations of q-commutativity

ba = qab, ca = qac, bc = cb, dc = qcd, db = qbd, da = ad+ (q − q−1)bc

and a determinant relation ad− q−1bc = 1. The pairing is the same as in Exam-
ple 2 in Section 2 at the level of generators (after a change of basis).

The main feature of these quantum groups, in contrast to the bicrossprod-
uct ones, is that their representations form braided categories. Thus, if V,W ∈
Rep(Uq(g)) then V ⊗W is (as for any quantum group) also a representation.
The action is

h:(v⊗w) = (∆h).(v⊗w) (31)
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for all h ∈ Uq(g), where we use the coproduct (for example the linear form
of the coproduct of H means that it acts additively). The special feature of
quantum groups like Uq(g) is that there is an element R ∈ Uq(g)⊗̄Uq(g) (the
‘universal R-matrix or quasitriangular structure’) which ensures an isomorphism
of representations by

ΨV,W : V ⊗W →W ⊗V, ΨV,W (v⊗w) = P ◦ R.(v⊗w) (32)

where P is the usual permutation or flip map. This braiding Ψ behaves much like
the usual transposition or flip map for vector spaces but does not square to one.
To reflect this one writes Ψ = , Ψ−1 = . It has properties consistent with the
braid relations, i.e. when two braids coincide the compositions of Ψ, Ψ−1 that
they represent also coincide. The fundamental braid relation of the braid group
in Figure 5(a) corresponds to the famous Yang-Baxter or braid relation for the
matrix corresponding to Ψ .

(a)

=

(b) (c)

==

Fig. 5. (a) Braid relations (b) Trefoil knot (c) Braided algebra calculation

From this it is more or less obvious that such quantum groups lead to knot
invariants. One can scan the (oriented) knot such as in Figure 5(b) from top
to bottom. We choose a representation V with dual V ∗ and label the knot
by V against a downward arc and V ∗ against an upward arc. As we read the
knot, when we encounter an arc V ∩V ∗ we let it represent the canonical element∑

a ea⊗ fa ∈ V ⊗V ∗. When we encounter crossings we represent them by the
appropriate Ψ and finally when we encounter V

∗∪V we apply the evaluation map.
There is also a prescription for when we encounter V ∗∩V and V ∪V ∗

. At the end
of the day we obtain a number depending on q (which went into the braiding).
This function of q is (with some fiddling that we have not discussed) an invariant
of the knot regarded as a framed knot. This is not the place to give details of
knot theory, but this is the rough idea. In physical terms one should think of the
knot as a process in 1+1 dimensions in which a particle V and antiparticle V ∗

is created at an arc, some kind of scattering Ψ occurs at crossings, etc.

For standard Uq(g) the construction of representations is not hard, all the
standard ones of g just q-deform. For example, the spin 1

2 representation of
su2 deforms to a 2-dimensional representation of Uq(su2). The associated knot
invariant is the celebrated Jones polynomial.
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5.1 Braided mathematics and braided groups

This braiding is the key property of the quantum groups Uq(g) and other ‘quasi-
triangular Hopf algebras’ of similar type. It means in particular that any algebra
on which the quantum group acts covariantly becomes braided. This is therefore
indicative of a whole braided approach to noncommutative geometry or braided
geometry via algebras or ‘braided’ spaces on which quantum groups Uq(g) act as
generalised symmetries. Note that we are not so much interested in this point
of view in the noncommutative geometry of the quantum groups Uq(g) them-
selves, although one can study this as a source of mathematical examples. More
physical is the algebras in which these objects act.

In this approach the meaning of q is that it enters into the braiding, i.e. it
generalises the −1 of supertransposition in super-geometry. This is ‘orthogonal’
to the usual idea of noncommutative geometry, i.e. it is not so much a property
of one algebra but of composite systems, namely of the noncommutativity of
tensor products. The simplest new case is where the braiding is just a factor q.
To see how this works, consider the braided line B = C [x]. As an algebra this is
just the polynomials in one variable again.

Example 4. Let B = C [x] be the braided line, where independent copies x, y
have braid statistics yx = qxy when one is transposed past the other (c.f. a
Grassmann variable but with −1 replaced by q). Then

∂qf(y) = x−1 (f(x+ y) − f(x)) |x=0 =
f(y) − f(qy)

(1 − q)y

This is easy to see on monomials, i.e. ∂qy
n is the coefficient of the x-linear

part in (x + y)n after we move all x to the left. In fact mathematicians have
played with such a q-derivative since 1908[35] as having many cute properties.
We see[36] that it arises very naturally from the braided point of view – one just
has to realise that x is a braided variable. This point of view also leads to the
correct properties of integration. Namely there is a relevant indefinite integration
to go with ∂q characterised by[37]

∫ x+y

0

f(z)dqz =

∫ y

0

f(z)dqz +

∫ x

0

f(z + y)dqz (33)

provided yx = qxy, yz = qzy etc., during the computation. In the limit this
gives the infinite Jackson integral previously known in this context. One also has
braided exponentials, braided Fourier theory etc., for these braided variables.

The braided point of view is also much more powerful than simply trying to
sprinkle q into formulae here and there.

Example 5. Let B = C
2
q be the quantum-braided plane generated by x, y with

the relations yx = qxy, where two independent copies have the braid statistics

x′x = q2xx′, x′y = qyx′, y′y = q2yy′, y′x = qxy′ + (q2 − 1)yx′.
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Here x′, y′ are the generators of the second copy of the plane. Then

(y + y′)(x + x′) = q(x + x′)(y + y′)

i.e. x+x′, y+ y′ is another copy of the quantum-braided plane. Then by similar
definitions as above, one has braided partial derivatives

∂q,xf(x, y) =
f(x, y) − f(qx, y)

(1 − q)x , ∂q,yf(x, y) =
f(qx, y) − f(qx, qy)

(1 − q)y

for expressions normal ordered to x on the left. Note in the second expression
an extra q as ∂q,y moves past the x

Thus you can add points in the braided plane, and then (by an infinitesimal
addition) define partial derivatives etc. This is a problem (multilinear q-analysis)
which had been open since 1908 and was only solved relatively recently (by the
author) in [36], as a demonstration of braided mathematics. We note in passing
that yx = qxy is sometimes called the ‘Manin plane’. Manin considered only the
algebra and a quantum group action on it, without the braided point of view,
without the braided addition law and without the partial derivatives.

Finally, there is a more formal way by which all such constructions are done
systematically, which we now explain. It amounts to nothing less than a new
kind of algebra in which algebraic symbols are replaced by braids and knots.

First of all, given two algebras B,C in a braided category (such as the rep-
resentation of Uq(g)) we have a braided tensor product B⊗C algebra in the
same category defined like a superalgebra but with −1 replaced by the braiding
ΨC,B . Thus the tensor product becomes noncommutative (even if each algebra
B,C was commutative) – the two subalgebras ‘commute’ up to Ψ . This is the
mathematical definition of braid statistics: the noncommutavity of the notion
of ‘independent’ systems. We call such noncommutativity outer in contrast to
the inner noncommutativity of quantisation, which is a property of one algebra
alone. In Example 4, the joint algebra of the independent x, y is C [x]⊗C [y] with
Ψ(x⊗ y) = qy⊗x. In Example 5 the braided tensor product is between one copy
x, y and the other x′, y′. The braiding Ψ in this case is more complicated. In fact
it is the same braiding from the Uq(su2) spin 1

2 representation that gave the
Jones polynomial. The miracle that makes knot invariants is the same miracle
that allows braided multilinear algebra.

The addition law in both the above examples makes them into braided
groups[38]. They are like quantum groups or super-quantum groups but with
braid statistics. Thus, there is a coproduct

∆x = x⊗ 1 + 1⊗x, ∆y = y⊗ 1 + 1⊗ y

etc., (this is a more formal way to write x+x′, y+y′). But ∆ : B → B⊗B rather
than mapping to the usual tensor product. We do not want to go into the whole
theory of braided groups here. Suffice it to say that the theory can be developed
to the same level as quantum groups: integrals, Fourier theory, etc., but using
new techniques. One draws the product B⊗B → B as a map , the coproduct
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as , etc. Similarly with other maps, some strands coming in for the inputs
and some leaving for the outputs. We then ‘wire up’ an algebraic expression by
wiring outputs of one operation into the inputs of others. When wires have to
cross under or over we have to chose one or the other as Ψ or Ψ−1. We draw such
diagrams flowing down the page. An example of a braided-algebra calculation is
given in Figure 5(c).

Braided groups exist in abundance. There are general arguments that every
algebraic quantum field theory contains at its heart some kind of (slightly gen-
eralised) braided group[39]. Moreover, the ideas here are clearly very general:
braided algebra.

5.2 Systematic q-Special Relativity

Clearly braided groups are the correct foundation for q-deformed geometry based
on q-planes and similar q-spaces. One of their main successes in the period 1992-
1994 was a more or less complete and systematic q-deformation by the team in
Cambridge of the main structures of special relativity and electromagnetism, i.e.
q-Minkowski space and basic structures [40][41][36][42][43][37][44][45][46]:

• q-Minkowski space as 2 × 2 braided Hermitian matrices

• q-addition etc., on q-Minkowski space

• q-Lorentz quantum group C q (SU2):�C q (SU2)

• q-Poincaré+scale quantum group R1,3
q >�· ^Uq(so1,3)

• q-partial derivatives

• q-differential forms

• q-epsilon tensor

• q-metric

• q-integration with Gaussian weight

• q-Fourier theory

• q-Green functions (but no closed form)

• q-∗ structures and q-Wick rotation

The general theory works for any braiding or ‘R-matrix’. I do want to stress,
however, that this project was not in a vacuum. For example, the algebra of
q-Minkowski had been proposed independently of [40] in [47], but without the
braided matrix or additive structures. The q-Lorentz was studied by the same au-
thors but without its quasitriangular structure, Wess, Zumino et al.[48] studied
the q-Poincaré but without its semidirect structure and action on q-Minkowski
space, while Fiore[49] studied q-Gaussians in the Euclidean case, etc. More re-
cently, we have[50][51],

• q-conformal group R1,3
q >�· ^Uq(so1,3)·:<R1,3

q

• q-diffeomorphism group
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Notably not on the list, in my opinion still open, is the correct formulation
of the q-Dirac equation. Aside from this, the programme came to an end when
certain deep problems emerged. In my opinion they are as follows. First of all,
we ended up with formal power-series e.g. the q-Green function is the inverse
Fourier transform of (p · p−m2)−1 so in principle it is now defined. But not in
closed form! The methods of q-analysis as in [35][52] are not yet far enough ad-
vanced to have nice names and properties for the kinds of powerseries functions
encountered. This is a matter of time. Similarly, braided integration means we
can in principle write down and compute braided Feynman diagrams and hence
define braided quantum field theory at least operatively. Recently R. Oeckl was
able[53] to apply the braided integration theory of [37] not to q-spacetime but
directly to a q-coordinate algebra as the underlying vector space of fields on
spacetime. Here the braided algebra B replaces the ‘fields’ on spacetime. Choos-
ing a basis of such fields one can still apply braided Gaussian integration and
actually compute correlation functions. So the computational problems can and
are being overcome.

Secondly and more conceptual, it should be clear that when we deform clas-
sical constructions to braided ones we have to choose Ψ or Ψ−1 whenever wires
cross. Sometimes neither will do, things get tangled up. But if we succeed it
means that for every q-deformation there is another where we could have made
the opposite choice in every case. This classical geometry bifurcates into two q-
deformed geometries according to Ψ or Ψ−1. Moreover, the role of the ∗ operation
is that it interchanges these two[45]. Roughly speaking,

↗ q − geometry
classical geometry  ∗

↘ conjugate q − geometry

where the conjugate is constructed by interchanging the braiding with the inverse
braiding (i.e. reversing braid crossings in the diagrammatic construction). For
the simplest cases like the braided line it means interchanging q, q−1. This is
rather interesting given that the ∗ is a central foundation of quantum mechanics
and our concepts of probability. But it also means one cannot do q-quantum
mechanics etc., with q-geometry alone; one needs also the conjugate geometry.

5.3 The physical meaning of q

According to what we have said above, the true meaning of q is that it gener-
alises the −1 of fermionic statistics. That is why it is dimensionless. It is nothing
other than a parameter in a mathematical structure (the braiding) in a gener-
alisation of our usual concepts of algebra and geometry, going a step beyond
supergeometry.

This also means that q is an ideal parameter for regularising quantum field
theory. Since most constructions in physics q-deform, such a regularisation scheme
is much less brutal than say dimensional or Pauli-Villars regularisation as it pre-
serves symmetries as q-symmetries, the q-epsilon tensor etc. [15]. In this context
it seems at first too good a regularisation. Something has to go wrong for anoma-
lies to appear.
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Conjecture 4. In q-regularisation the fact that only the Poincaré+scale q-deforms
(the two get mixed up) typically results (when the regulator is removed after
renormalisation) in a scale anomaly of some kind.

This is probably linked to a much nicer treatment of the renormalisation group
that should be possible in this context. Again a lot of this must await more
development of the tools of q-analysis. At any rate the result in [15] is that
q-deformation does indeed regularise, turning some of the infinities from a Feyn-
man loop integration into poles (q − 1)−1.

All of this is related to the Planck scale as follows. Thus, as well as being a
good regulator one can envisage (in view of our general ideas about noncommu-
tativity and the Planck scale) that the actual world is in reality better described
by q "= 1 due to Planck scale effects. In other words q-deformed geometry could
indeed be the next-to-classical order approximation to the geometry coming out
of some unknown theory of quantum gravity. This was the authors own personal
reason[15] for spending some years q-deforming the basic structures of physics.
The UV cut-off provided by a ‘foam-like structure of space time’ would instead be
provided by q-regularisation with q "= 1. Moreover, if this is so then q-deformed
quantum field theory should also appear coming out of quantum gravity as an
approximation one better than the usual. Such a theory would be massless ac-
cording to the above remarks (because there is no q-Poincaré without the scale
generator). Or at least particle masses would be small compared to the Planck
mass. How the q-scale invariance breaks would then be a mechanism for mass
generation.

There are also several other ‘purely quantum’ features of q-geometry not
visible in classical geometry, which would likewise have consequences for Planck
scale physics. One of them is:

Theorem 2. The braided group version of the enveloping algebras Uq(g) and
their q-coordinate algebras are isomorphic. I.e. there is essentially only one ob-
ject in q-geometry with different scaling limits as q → 1 to give the classical
enveloping algebra of g or coordinate algebra of G.

The self-duality isomorphisms involve dividing by q−1 and are therefore singular
when q = 1, i.e. this is totally alien to conventional geometric ideas. Enveloping
algebras and their coordinate algebras are supposed to be dual not isomorphic.
This self-duality in q-geometry is rather surprising but is fully consistent with
the self-duality ideas of Section 2. In many ways q-geometry is simpler and more
regular than the peculiar q = 1 that we are more familiar with.

Recently, it was argued[11] that since loop gravity is linked to the Wess-
Zumino-Witten model, which is linked to Uq(su2) (or some other quantum
group), that indeed q-geometry should appear coming out of quantum-gravity
with cosomological constant Λ. There is even provided a formula

q = e
2πı
2+k , k =

6π

G2
NewtonΛ

.
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If so then the many tools of q-deformation developed in the last several years
would suddenly be applicable to study the next-to-classical structure of quantum-
gravity. The fact that loop variable and spin-network methods ‘tap into’ the rev-
olutions that have taken place in the last decade around quantum groups, knot
theory and the WZW model (this was evident for example in the black-hole en-
tropy computation[54]) makes such a conjecture reasonable. It also indicates to
me that these new quantum gravity methods are not just ‘pushing some problem
off to another corner’ but are building on a certain genuine advance that has
already revolutionised several other branches of mathematics. Usually in science
when one big door is opened it has nontrivial repercussions in several fields.

One way or another the general idea is that quantum effects dominant at the
Planck scale force geometry itself to be modified as we approach it such as to
have a noncommutative or ‘quantum’ aspect expressed by q "= 1. Although q is
dimensionless and might be given, for example, by formulae such as the above,
one can and should still think of q as behaving formally like the exponential
of an effective Planck’s constant ~0, say. That is we can make semiclassical
expansions, speak of Poisson-brackets being ‘quantized’ etc. This is not exactly
physical quantisation except in so far as quantum effects at the Planck scale are
at the root of it. The precise physical link can only be made in a full theory of
quantum gravity. It is only in this sense, however, that q-geometry is ‘quantum
geometry’ and ‘quantum groups’ are so called. For example, the q-coordinate
algebras of Uq(g) are quantisations in this sense of a certain Poisson-Lie bracket
on G (as mentioned in Section 4.3). Similarly for all our other q-spaces.

Example 6. [50] q-Minkowski space quantises a Poisson-bracket on R
1,3 given by

the action of the special conformal translations.

This again points to a remarkable interplay between q-regularisation, the renor-
malisation group, gravity and particle mass.

At least in this context we want to note that the braided approach of this
subsection gives a new and systematic approach to the ‘quantisation’ problem
that solves by new ‘braid diagram’ methods some age-old problems. Usually, one
writes a Poisson bracket and tries to ‘quantise’ it by a noncommutative algebra.
Apart from existence, the problem often overlooked is what I call the uniformity
of quantisation problem. There is only one universe. How do we know when we
have quantised this or that space separately that they are consistent with each
other, i.e. that they all fit together to a single quantum universe?

Our theme in Section 2 is of course is that quantisation is not a well-defined
problem. Rather one should have a deeper point of view which leads directly to
the quantum-algebraic world – what we call geometry is then the semiclassical
limit of the intrinsic structure of that, i.e. all different spaces and choices of
Poisson structures on them will emerge from semiclassicalisation and not vice
versa.

Braided algebra solves the uniformity problem in this way. Apart from giv-
ing the q-deformation of most structures in physics, it does it uniformly and in
a generally consistent way because what what we deform is actually the cate-
gory of vector spaces into a braided category. All constructions based on linear
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maps then deform coherently and consistently with each other as braid diagram
constructions (so long as they do not get tangled). After that one inserts the
formulae for specific braidings (e.g. generated by specific quantum groups) to
get the q-deformation formulae. After that one semiclassicalises by taking com-
mutators to lowest order, to get the Poisson-bracket that we have just quantised.
Moreover, different quantum groups Uq(g) are all mutually consistent being re-
lated to each other by an inductive construction[55]. We have seen this with
q-Minkowski space above.

In summary, the q-deformed examples demonstrate a remarkable unification
of three different points of view; q as a generalisation of fermionic -1, q as a
‘quantisation’ (so these ideas are unified) and q as a powerful regularisation
parameter in physics. By the way, these are all far from the original physical
role of q, where Uq(su2) arose as a generalised symmetry of the XXY lattice
model and where q measures the anisotropy due to an applied external magnetic
field (rather, they are the authors’ point of view developed under the heading of
the braided approach to q-deformation and braided geometry).

6 Noncommutative differential geometry
and Riemannian manifolds

We have promised that today there is a more or less complete theory of non-
commutative differential geometry that includes most of the naturally occurring
examples such as those in previous sections, but is a general theory not limited
to special examples and models, i.e. has the same degree of ‘flabbiness’ as con-
ventional geometry. Here I will try to convince you of this and give a working
definition of a ‘quantum manifold’ and ‘quantum Riemannian manifold’[4]. I do
not want to say that this is the last word; the subject is still evolving but there
is now something on the table. Among other things, our constructions are purely
algebraic with operator and C∗-algebra considerations as in Connes’ approach
not fully worked. In any case, the reader may well want to start with the more
accessible Section 6.4, where we explore the semiclassical implications at the
more familiar level of the ordinary differential geometry coming out of the full
noncommutative theory.

6.1 Quantum differential forms

As explained in Section 2 our task is nothing other than to give a formulation
of geometry where the coordinate algebra on a manifold is replaced by a gen-
eral algebra M . The first step is to choose the cotangent space or differential
structure. Since one can multiply forms by ‘functions’ from the left and right,
the natural definition is to define a first order calculus as a bimodule Ω1 of the
algebra M , along with a linear map d : M → Ω1 such that

d(ab) = (da)b+ adb, ∀a, b ∈M.
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Differential structures are not unique even classically, and even more non-unique
in the quantum case. There is, however, one universal example of which others
are quotients. Here

Ω1
univ = ker · ⊂M ⊗M, da = a⊗ 1 − 1⊗a.

Classically we do not think about this much because on a group there is a
unique translation-invariant differential calculus; since we generally work with
manifolds built on or closely related to groups we tend to take the inherited
differential structure without thinking. In the quantum case, i.e. when M is a
quantum (or braided) group one has a similar notion [56]: a differential calculus
is bicovariant if there are coactions Ω1 → Ω1 ⊗M,Ω1 → M ⊗Ω1 forming a
bicomodule and compatible with the bimodule structures and d.

Theorem 3. [57] For the q-coordinate rings of the quantum groups Uq(g), the
(co)irreducible bicovariant (ω1, d) are essentially (for generic q) in correspon-
dence with the irreducible representations ρ of g, and

Ω1
univ = ⊕ρΩ

1
ρ.

The lowest spin 1
2 representation of Uq(su2) defines its usual differential cal-

culus plus a Casimir as q → 1. The higher differential calculi show up in the
q-geometry and correspond to higher spin. This should therefore be a step to-
wards understanding how macroscopic differential geometry arises out of the
loop gravity and spin network formalism. For example, the black-hole entropy
computation[54] reported in Abbay Ashtekar’s lectures at the conference was
dominated by the spin 1

2 states, which seems to me should be analogous to
the standard differential calculus on the spin connection bundle dominating as
macroscopic geometry emerges from the quantum gravity theory.

We do not have room to give more details here even of an example of Theo-
rem 3, but see [57]. Instead we content ourselves with an even simpler and more
pedagogical result.

Proposition 1. [58] If k is a field and M = k[x] the polynomials in one vari-
able, the (co)irreducible bicovariant calculi (Ω1, d) are in correspondence with
field extensions of the form kλ = k[λ] modulo m(λ) = 0, where m is an irre-
ducible monic polynomial. Here

Ω1 = kλ[x], df(x) =
f(x+ λ) − f(x)

λ
,

f(x).g(λ, x) = f(x+ λ)g(λ, x), g(λ, x).f(x) = g(λ, x)f(x)

for functions f and one-forms g.

For example, over C , (Ω1, d) on C [x] are classified by λ0 ∈ C and one has

Ω1 = dxC [x], df = dx
f(x+ λ0) − f(x)

λ0
, xdx = (dx)x + λ0. (34)
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We see that the Newtonian case λ0 = 0 is only one special point in the mod-
uli space of quantum differential calculi. But if Newton had not supposed that
differentials and forms commute he would have had no need to take this limit.
What one finds with noncommutative geometry is that there is no need to take
this limit at all. In particular, noncommutative geometry extends our usual con-
cepts of geometry to lattice theory without taking the limit of the lattice spacing
going to zero.

It is also interesting that the most important field extension in physics, R ⊂
C , can be viewed noncommutative-geometrically with complex functions C [x]
the quantum 1-forms on the algebra of real functions R[x]. As such its quantum
cohomology is nontrivial, see [58].

6.2 Bundles and connections

To go further one has to have a pretty abstract view of differential geometry.
For trivial bundles it is a little easier: fix a quantum group coordinate ring H .
Then a gauge field is a map H → Ω1, etc. See [59][60]. To define a manifold,
however, one has to handle nontrivial bundles. In noncommutative geometry
there is (as yet) no proper way to build this by patching trivial bundles. All
those usual concepts involve open sets etc, not existing in the noncommutative
case. Fortunately, if one thinks about it abstractly enough one can come up with
a purely algebraic formulation independent of any patches or coordinate system.
For simplicity we are going to limit attention to the universal calculi; the theory
is know for general calculi as well.

Basically, a classical bundle has a free action of a group and a local triviality
property. In our algebraic terms this translates[5][60] to an algebra P in the role
of ‘coordinate algebra of the total space of the bundle’, a coaction ∆R : P →
P ⊗H of the quantum group H such that the fixed subalgebra is M ,

M = PH = {p ∈ P | ∆Rp = p⊗ 1}. (35)

Local triviality is replaced by the requirement that

0 → P (Ω1M)P → Ω1P
χ̃−→P ⊗ ker ε→ 0 (36)

is exact, where χ̃ = (· ⊗ id)∆R plays the role of generator of the vertical vector
fields corresponding classically to the action of the group (for each element of
H∗ it maps Ω1P → P like a vector field). Exactness says that the one-forms
P (Ω1M)P lifted from the base are exactly the ones annihilated by the vertical
vector fields.

An example is the quantum sphere. Classically the inclusion U(1) ⊂ SU2 in
the diagonal has coset space S2 and defines the U(1) bundle over the sphere
on which the monopole lives. The same idea works here, but since we deal with
coordinate algebras the arrows are reversed. The coordinate algebra of U(1) is
the polynomials C [g, g−1 ].
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Example 7. There is a projection from C q (SU2) → C [g, g−1 ]

π

(
a b
c d

)
=

(
g 0
0 g−1

)

Its induced coaction ∆R = (id⊗π)∆ is by the degree defined as the number of
a, c minus the number of b, d in an expression. The quantum sphere S2

q is the
fixed subalgebra i.e. the degree zero part. Explicitly, it is generated by b3 = ad,
b+ = cd, b− = ab with q-commutativity relations

b±b3 = q±2b3b± + (q±2 − 1)b3, q2b−b+ = q−2b+b− + (q − q−1)(b3 − 1)

and the sphere equation b33 = b3 + qb−b+, and forms a quantum bundle[5][60].

When q → 1 we can write b± = ±(x ± ıy), b3 = z + 1
2 and the sphere

equation becomes x2 +y2+z2 = 1
4 while the others become that x, y, z commute.

The quantum sphere itself is a member of a 2-parameter family[61] of quantum
spheres (the others can also be viewed as bundles in a suitable framework[62].)

One can go on and define a connection as an equivariant splitting

Ω1P = P (Ω1M)P ⊕ complement (37)

i.e. an equivariant projection Π on Ω1P . One can show the required analogue
of the usual theory, i.e. that such a projection corresponds to a connection form
such that

ω : ker ε→ Ω1P, χ̃ω = id (38)

where ω intertwines with the adjoint coaction of H on itself. There is such a
connection on the example above – the q-monopole[5]. It is ω(g−1) = dda−qbdc.

Finally, one can define associated bundles. If V is a vector space on which
H coacts then we define the associated ‘bundles’ E∗ = (P ⊗V )H and E =
homH(V, P ), the space of intertwiners. The two bundles should be viewed geo-
metrically as ‘sections’ in classical geometry of bundles associated to V and V ∗.
Given a suitable (strong) connection one has a covariant derivative

Dω : E → E⊗M, Dω = (id −Π) ◦ d (39)

This is where the noncommutative differential geometry coming out of quan-
tum groups links up with the more traditional C∗-algebra approach of A. Connes
and others. Traditionally a vector bundle over any algebra is defined as a finitely
generated projective module. However, there is no notion of quantum princi-
pal bundle of course without quantum groups. The associated bundles to the
q-monopole bundle are indeed finitely generated projective modules[63]. The
projectors are elements of the noncommutative K-theory K0(S2

q ) and their pair-
ing with Connes’ cyclic cohomology[9] allows one to show that the bundle is
non-trivial even when q "= 1. Thus the quantum groups approach is compatible
with Connes’ approach but provides more of the (so far algebraic) infrastructure
of differential geometry – principal bundles, connection forms, etc. otherwise
missing.
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6.3 Soldering and quantum Riemannian structure

With the above ingredients we can give a working definition of a quantum man-
ifold. See refer to [4] for details. The idea is that the main feature of being a
manifold is that, locally, one can chose a basis of the tangent space at each point
(e.g. a vierbein in physics) patching up globally via GLn gauge transformations.
In abstract terms it means a frame bundle to which the tangent bundle is as-
sociated by a ‘soldering form’. For a general algebra M we specify this ‘frame
bundle’ directly as some suitable quantum group principal bundle.

Thus, we define a frame resolution ofM as quantum principal bundle overM ,
(P,H,∆R), a comodule V and an equivariant ‘soldering form’ θ : V → PΩ1M ⊂
Ω1P such that the induced map

E∗ → Ω1M, p⊗ v $→ pθ(v) (40)

is an isomorphism. Of course, all of this has to be done with suitable choices
of differential calculi on M,P,H whereas we have been focusing for simplicity
on the universal calculi. There are some technical problems here but the same
definitions more or less work in general. Our working definition[4] of a quantum
manifold is this data (M,Ω1, P,H,∆R, V, θ).

The definition works in that one has many usual results. For example, a
connection ω on the frame bundle induces a covariant derivative Dω on the
associated bundle E which maps over under the soldering isomorphism to a
covariant derivative

∇ : Ω1M → Ω1M ⊗
M
Ω1M. (41)

Its torsion is defined as corresponding similarly to Dωθ.
Defining a Riemannian structure is harder. It turns out that it can be done

in a ‘self-dual’ manner as follows. Given a framing, a ‘generalised metric’ isomor-
phism Ω−1M → Ω1M between vector fields and one forms can be viewed as the
existence of another framing θ∗ : V ∗ → (Ω1M)P , which we call the coframing,
this time with V ∗. Nondegeneracy of the metric corresponds to θ∗ inducing an
isomorphism E∼=Ω1M .

Thus our working definition[4] of a quantum Riemannian manifold is the
data (M,Ω1, P,H,∆R, V, θ, θ

∗), where we have a framing and at the same time
(M,Ω1, P,H,∆R, V

∗, θ∗) is another framing. The associated quantum metric is

g =
∑
a

θ∗(fa)θ(ea) ∈ Ω1M ⊗
M
Ω1M (42)

where {ea} is a basis of V and {fa} is a dual basis (c.f. our friend the canonical
element exp from Fourier theory in Section 3).

Now, this self-dual formulation of ‘metric’ as framing and coframing is sym-
metric between the two. One could regard the coframing as the framing and vice
versa. From our original point of view its torsion tensor corresponding to Dωθ

∗

is some other tensor, which we call the cotorsion tensor[4]. We then define a
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generalised Levi-Civita connection on a quantum Riemannian manifold as the
∇ of a connection ω such that the torsion and cotorsion tensors both vanish.

This is about as far as this programme has reached at present. One defines
curvature of course as corresponding to the curvature of ω, which is dω+ω ∧ω,
but before we can finish the program outlined in Section 2 we still need to
understand the Ricci and Einstein tensors in this setting. For this one has to
understand their classical meaning more abstractly i.e. beyond some contraction
formulae even in conventional geometry. It would appear that it has a lot to do
with entropy and the relation between gravity and counting (geometric) states
thermodynamically.

6.4 Semiclassical limit

To get the physical meaning of the cotorsion tensor and other ideas coming out
of noncommutative Riemannian geometry, let us consider the semiclassical limit.
What we find is that noncommutative geometry forces us to slightly generalise
conventional Riemannian geometry itself. If noncommutative geometry is closer
to what comes out of quantum gravity then this generalisation of conventional
Riemannian geometry should be needed to include Planck scale effects or at least
to be consistent with them when they emerge at the next order of approximation.

The generalisation, more or less forced by the noncommutativity, is as follows:

• We have to allow any group G in the ‘frame bundle’, hence the more general
concept of a ‘frame resolution’ (P,G, V, θaµ) or generalised manifold.

• The generalised metric gµν =
∑

a θ
∗
µ
aθνa corresponding to a coframing θ∗µ

a

is nondegenerate but need not be symmetric.
• The generalised Levi-Civita connection defined as having vanishing torsion

and vanishing cotorsion respects the metric only in a skew sense

∇µgνρ −∇νgµρ = 0 (43)

• The group G is not unique (different flavours of frames are possible, e.g. an
E6-resolved manifold), not necessarily based on SOn. This gives different
flavours of covariant derivative ∇ that can be induced by a connection form
ω.

• Even when G is fixed and gµν is fixed, the generalised Levi-Cevita condition
does not fix ∇ uniquely, i.e. one should use a first order (gµν ,∇) formalism.

To explain (43) we should note the general result [4] that for any generalised
metric one has

∇µgνρ −∇νgµρ = CoTorsionµνρ − Torsionµνρ, (44)

where we use the metric to lower all indices. Here ω gives two covariant deriva-
tives

θ ↗ ∇
ω
θ∗ ↘ ∗∇
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depending on whether we regard θ or θ∗ as the soldering form. The two are
related by

g(∗∇XY, Z) + g(Y,∇XZ) = X(g(Y, Z)) (45)

for vector fields X,Y, Z. The cotorsion is the torsion of ∗∇.
Our generalisation of Riemannian geometry includes for example symplectic

geometry, where the generalised metric is totally antisymmetric. So symplec-
tic and Riemannian geometry are included as special cases and unified in our
formulation. This is what we would expect if the theory is to be the semiclassical-
isation of a theory unifying quantum theory and geometry. It is also remarkable
that metrics with antisymmetric part are exactly what are needed in string the-
ory to establish T-duality, which is entirely consistent with our duality ideas of
Section 2.
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Abstract. This series of lectures gives an introduction to the non-perturbative and
background-independent formulation for a quantum theory of gravitation which is
called loop quantum gravity. The Hilbert space of kinematical quantum states is con-
structed and a complete basis of spin network states is introduced. Afterwards an
application of the formalism is provided by the spectral analysis of the area operator,
which is the quantum analogue of the classical area function. This leads to one of the
key results of loop quantum gravity obtained in the last few years: the derivation of
the discreteness of the geometry and the computation of the quanta of area. Special
importance is attached to the role played by the diffeomorphism group in order to clar-
ify the notion of observability in general relativity – a concept far from being trivial.
Finally an outlock onto a possible dynamical extension of the theory is given, leading to
a “sum over histories” approach, namely a so-called spin foam model. Throughout the
whole lecture great significance is attached to conceptual and interpretational issues.

1 Introduction

In the beginning of this century, physics has undergone two great conceptual
changes. With the discovery of general relativity and quantum mechanics the
notions of matter, causality, space and time experienced the biggest modifica-
tions since the age of Descartes, Copernicus, and Newton. However, no fully
convincing synthesis of these theories exists so far. Simple dimensional analysis
reveals that new predictions of a quantum theory of gravitation are expected

to take place at the Planck length lP ≡
(
~G/c3

)1/2 ∼ 10−35m. This scale ap-
pears to be far below any current experimental technique. Nevertheless, quite
recently interesting proposals and ideas to probe experimentally the physics at
the Planck scale have been suggested [1,2].

From the theoretical point of view, several approaches to a theory of quan-
tum gravity have emerged, inspired by various research fields in contemporary
physics and mathematics. The most popular research direction is in the realms
of string theory, followed by loop quantum gravity. Other directions range from
discrete methods to non-commutative geometry. We have listed the main cur-
rent approaches to a quantum theory gravity (which are moreover far from being

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 277−324, 2000.
 Springer-Verlag Berlin Heidelberg 2000
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Table 1. Main current approaches to quantum gravity.

Traditional Most Popular New

Discrete methods
Dynamical triangulations
Regge calculus
Simplicial models
→ 2nd order transition?

String theory
→ Black hole entropy

Non-commutative geometry
→ Quantum theory?

Approximate theories
Euclidean quantum gravity
Perturbative quantum gr.
→Woodard–Tsamis effect
QFT on curved space–times

Loop quantum gravity
→ Black hole entropy
→ Eigenvalues of geometry:

Aj = 16π~G
P

i

p
ji(ji + 1)

Null surfaces
→ Observables?

Spin foam models
→ convergence of loop,

discrete, TQFT
and sum-over-histories

Unorthodox approaches
Sorkin’s Posets
Finkelstein
Twistors
. . .

independent) in table 1. Despite this variety of ideas and the effort put in so far,
many, many questions are still open. For an overview and a critical compar-
ison of the different approaches, see [3]. Some of these conceptually different
approaches show surprising similarities which could be a focal point of attention
for the future1.

String theory was inspired and constructed mainly by particle physicists.
Its attitude towards the fundamental forces is to treat general relativity on an
equal footing with the field theories describing the other interactions, the des-
tinctive feature being the energy scale. String theory is supposed to be a theory
of all interactions – electromagnetic, strong, weak and gravitational – which
are treated in a unified quantum framework. Classical (super-)gravity emerges
perturbatively as a low-energy limit in superstring theory.

The problem until 1995 was the lack of a non-perturbative formulation of the
theory. This situation has improved with the discovery of the string dualities, “D-
branes”, and “M-theory” in the so-called 2nd superstring revolution. Nevertheless
despite the recent exciting discoveries in M-theory and the AdS/CFT equiva-
lence, a complete non-perturbative or strong-coupling formulation of string/M-
theory is still not in sight.

1 For instance, string/M-theory, non-commutative geometry and loop quantum gravity
seem to point to a similar discrete short distance space–time structure. Suggestions
have been made that a complete theory must involve elements from each of the
approaches. For further details we refer to [4,5].
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A point that is often criticized in string theory by relativists is the lack
of a background independent formulation, i.e. invariance under active diffeo-
morphisms, which is one of the fundamental principles of general relativity.
String/M-theory is formulated on a (implicitly) fixed background geometry which
is itself not dynamical. In a truely background independent formulation, no refer-
ence to any classical metric should enter neither the definition of the state space
nor the dynamical variables of the theory. Rather the metric should appear as an
operator allowing for quantum states which may themselves be superpositions
of different backgrounds.

In fact, relativists do not view general relativity as an additional item in the
list of the field theories describing fundamental forces, but rather as a major
change in the manner space and time are described in physics. This point is
often misunderstood, and is often a source of confusion; it might be worthwhile
spending a few additional words. The key point is not that the gravitational
force, by itself, must necessarilly be seen as different from the other forces: the
point of view that the gravitational force is just one (and the weakest) among the
interactions is certainly viable and valuable. Rather, the key point is that, with
general relativity, we have understood that the world is not a non-dynamical
metric manifold with dynamical fields living over it. Rather, it is a collection of
dynamical fields living, so to say, in top of each other. The gravitational field
can be seen – if one wishes so – as one among the fields. But the definiton of the
theory over a given background is, from a fundamental point of view, physically
incorrect.

Loop quantum gravity is a background independent approach to quantum
gravity. For many details on this approach, and for complete references, see [6].
Loop quantum gravity has been developed ab initio as a non-perturbative and
background independent canonical quantum theory of gravity. Besides ordinary
general relativity and quantum mechanics no additional input is needed. The ap-
proach makes use of the reformulation of general relativity as a dynamical theory
of connections. Due to this choice of variables the phase space of the theory re-
sembles at the kinematical level closely that of conventional SU(2) Yang–Mills
theory. The main ingredient of the appraoch is the choice of holonomies of the
connections – the loop variables – as the fundamental degrees of freedom of
quantum gravity.

The philosophy behind this approch is different from string theory as one
considers here standard four dimensional general relativity trying to develop a
theory of quantum gravity in its proper meaning without claiming to describe
a unified picture of all interactions. Loop quantum gravity is extremely suc-
cessful in describing Planck-scale phenomena. The main open problem, on the
other hand, is the connection with low-energy phenomena. In this respect loop
quantum gravity has opposite strength and weakness than string theory.

One might wonder how one can hope to have a consistent non-perturbative
formulation of quantum gravity when perturbative quantization of covariant gen-
eral relativity is non-renormalizable. However, the basic assumption in proving
the non-renormalizability of general relativity is the availability of a Minkowskian
space–time at arbitrarily short distances, an assumption which is certainly not
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correct in a theory of quantized gravity, i.e. a quantum space–time regime. As
will be discussed later, one of the key results obtained so far in loop quantum
gravity has been the calculation of the quanta of geometry [7], i.e. the spectra of
the quantum analogues to the classical area and volume functionals. Remarkably
they turned out to be discrete! This result indicates the existence of a quantum
space–time structure at the Planck scale which doesn’t have to be continuous
anymore. More specifically this implies the emergence of a natural cut-off in
quantum gravity that might also account as a regulator of the ultraviolet diver-
gencies plaguing the standard model. Thus, standard perturbative techniques
in field theory cannot be taken for granted at scales where quantum effects of
gravity are expected to dominate.

General relativity is a constrained theory. Classically, the constraints are
equivalent to the dynamical equations of motion. The transition to the quantum
theory is carried out using canonical quantization by appliying the algorithm
developed by Dirac [8]. In the loop approach, the unconstrained classical the-
ory is quantized, requiring the implementation of quantum constraint operators
afterwards. Despite many results obtained in the last few years, a complete im-
plementation of all constraints including the Hamiltonian constraint, which is
the generator of “time evolution”, i.e. the dynamical part of the theory, is still
elusive. This is not surprising, since we do not expect to be able to obtain a
complete solution of a highly non-trivial and non-linear theory.

To address this issue, covariant methods to understand the dynamics have
been developed in the last few years. These can be obtained from a “sum over
histories” approach, derived from the canonical formulation. This development
has led to the so-called spin foam models, in which spin networks are loosely
speaking “propagated in time”, leading to a space–time formulation of loop
quantum gravity. This formulation of the theory provides a starting point for
approximations, offers a more intuitive understanding of quantum space–time,
and is much closer to particle physics methods. A brief description of these
models will be given below in sect. 5.2.

These lectures are organized as follows. We start in sect. 2 with the basic
mathematical framework of loop quantum gravity. We will end up with the
definition of the kinematical Hilbert space of quantum gravity. In the next section
an application of these tools is provided by constructing the basic operators on
this Hilbert space. We calculate in a simple manner the spectrum of what is
going to be physically interpreted as the area operator. Section 4 deals with
the important question of observability in classical and quantum gravity, a topic
which is far from being trivial, and the meaning of diffeomorphism invariance in
this context. In the end of theses notes, we will give the prospects for a dynamical
description of loop quantum gravity, which is encoded in the concept of spin foam
models. One such ansatz is briefly discussed in sect. 5. The following final section
concludes with future perspectives and open problems.

For the sake of completeness, we give in table 2 a short historical survey of
the main achievements in canonical quantum gravity since the reformulation of
general relativity in terms of connection variables. A more detailled discussion
of some of these various aspects is given in [6].
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Table 2. Short historical survey of canonical quantum gravity.

’86 Classical Connection Variables Ashtekar, Sen

’87 Lattice loop states solve Ĥ Jacobsen, Smolin

’88 Loop Quantum Gravity Smolin, Rovelli

’92 Weave States Ashtekar, Rovelli, Smolin

’95 Spin Network States Rovelli, Smolin

’95 Volume and Area Operators Rovelli, Smolin

’95 Measure and Functional Calcu-
lus

Isham, Baez, Thiemann, Marolf,
Mourau, Ashtekar, Lewandowski

’98 Hamiltonian Operator Thiemann

’98 Black Hole Entropy Krasnov, Rovelli, Baez, Corichi,
Ashtekar

’98 Spin Foam Formulation Reisenberger, Rovelli, Baez

2 Basic Formalism of Loop Quantum Gravity

Our attention in this lecture will be focused on conceptual foundations and the
development of the main ideas behind loop quantum gravity. However, because
of the highly mathematical nature of the subject some technical details are un-
avoidable, thus this section is devoted to the essential mathematical foundations.

The reader is not assumed to be familiar with the connection variables, which
constitute the basis for all the effort in canonical quantum gravity since 1986.
Thus we start by considering the canonical formalism in the connection approach,
which is reviewed in [9]. For a recent overview of loop quantum gravity and a
comprehensive list of references we refer to [6].

2.1 A brief Outline of the Connection Formalism

In loop quantum gravity, we construct the quantum theory using canonical quan-
tization. This is analogous to ordinary field theory is the functional Schrödinger
representation. The approach may be called conservative in the sense that orig-
inally no new structures like supersymmetry2, extended objects, or extra di-
mensions other than four are postulated. (It is important to emphasize, in this
context, the fact, although sometimes forgotten these days, that supersymme-
try, extended objects or extra dimensions are interesting theoretical hypotheses,
not established properties of Nature!). The approach aims at unifying quantum

2 Nevertheless, there exist extensions of the Ashtekar variables to supergravity [10],
and quite recently N = 1 supersymmetry was introduced in the context of spin
networks [11].
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mechanics and general relativity by developing new non-perturbative techniques
from the outset and by staying as close as possible to the conventional settings
of quantum theory and experimentally tested general relativity.

The foundations of the formalism date back to the early 60s when the “old”
Hamiltonian or canonical formulation of classical general relativity, known as
ADM formalism, was constructed. The canonical scheme is based on the con-
struction of the phase space Γ which is a covariant notion. It is the space of
solution of the equations of motion, modulo gauges. However, in order to co-
ordinatize Γ explicitly, one usually breakes explicitly covariance and splits 4-
dimensional space–timeM into 3-dimensional space plus time. We insist on the
fact that this breaking of covariance is not structurally needed in order to set
up the canonical formalism; rather it is only an artefact of the coordinatization
we chose for the phase space. We cover M, which is choosen to have topology
R×M , with a foliationMt, whereM is the 3-manifold which represents “space”
and t ∈ R is a (unphysical) time parameter. The basic variables on phase space
are taken to be the induced 3-metric qab(x) on M and the extrinsic curvature
Kab of M .

The easiest construction of the connection variables is given by first reformu-
lating the ADM–formalism of canonical gravity in terms of (local) triads eia(x),
which satisfy qab(x) = eia(x)e

i
b(x). This introduces an additional local SU(2)

gauge symmetry into the theory, which corresponds geometrically to arbitrary
local frame rotations. One obtains

(
Ea
i (x),K

i
a(x)

)
as the new canonical pair on

phase space Γ . Ea
i is the inverse densitized triad3, i.e. a vector with respect to

SU(2) and density weight one. The densitized triad itself is defined by Eia := e eia,
where e is the determinant of eia. The indices a, b, c, . . . refer to spatial tangent
space components, while i, j, k, . . . are internal SU(2) indices. The inverse triad
Ea
i is the square-root of the 3-metric in the sense that

Ea
i (x)E

b
i (x) = q qab(x) , (1)

where q is the determinant of the 3-metric qab(x). The canonically conjugate
variable Ki

a(x) of E
a
i (x) is again closely related to the extrinsic curvature of M

via Ki
a = KabE

bi/
√
q.

Finally the transition to the connection variables is made using a canonical
transformation on the (real) phase space,

Ai
a(x) = Γ i

a(x) + β Ki
a(x) . (2)

Here Γ i
a(x) is the SU(2) spin connection compatible with the triad, and β, the

Immirzi parameter, is an arbitrary real constant. The original Ashtekar–Sen
connection A(x) was introduced in 1982 as a complex selfdual connection on the
spatial 3-manifold M , corresponding to β = i in (2). Nevertheless, we will use
the real formulation.

3 In the literature one often finds tensor densities marked with an upper tilde for each
positive density weight and a lower tilde for each negative weight, such that the
densitized triad is written as eEi

a(x) :=
p

q(x) eia(x).
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Ashtekar discovered in 1986 that (Ai
a(x), E

a
i (x)) ∈ Γ form a canonical pair

on the phase space Γ of general relativity. Here Ai
a has to be considered as the

new configuration variable, while the inverse densitized triad Ea
i corresponds to

the canonically conjugate momentum. With this reformulation classical general
relativity has the same kinematical phase space structure as an SU(2) Yang–
Mills theory.

The Poisson algebra generated by the new variables is

{
Ea
i (x), E

b
j (y)

}
= 0 ,

{
Ai
a(x), A

j
b(y)

}
= 0 ,{

Ai
a(x), E

b
j (y)

}
= β G δij δ

b
a δ

3(x, y) , (3)

where G is the usual gravitational constant. It arises because the conjugate
momentum of the configuration variable Ai

a (obtained as the derivative of the
Lagrangian with respect to the velocities) is actually given by 1/G× Ea

i . As a
consequence of the 4-dimensional diffeomorphism invariance of general relativity,
the (canonical) Hamiltonian vanishes weakly4. The full dynamics of the theory
is encoded in so-called first-class constraints which are functions on phase space
that vanish for physical configurationes. The constraints generate transforma-
tions between those classical configurations that are physically indistinguishable.
The first-class constraints of canonical general relativity are the familiar Gauss
law of Yang–Mills theory, which generates local SU(2) gauge transformations,
the diffeomorphism constraint generating 3-dimensional diffeomorphisms of the
manifoldM , and the Hamiltonian constraint, which is the generator of the evolu-
tion of the inital spatial slice M in coordinate time. The Gauss constraint enters
the theory as a result of the choice of triads and it makes general relativity re-
semble a Yang–Mills gauge theory. Indeed the phase spaces of both theories are
similar. The constrained surface of general relativity is embedded into that of
Yang–Mills theory apart from the additional local restrictions which appear in
gravity besides the Gauss law.

The use of Ashtekar’s original set of canonical variables involving a complex
connection A(x) leads to a simplification of the Hamiltonian constraint. With the
use of a real connection, the constraint loses its simple polynomial form. At first,
this was considered as a serious obstacle for the quantization. However, T. Thie-
mann succeeded in constructing a Lorentzian quantum Hamiltonian constraint
[12] in spite of the non-polynomiality of the classical expression. His work has
prompted the wide use of the real connection, a use which was first advocated
by F. Barbero.

We now briefly describe the quantum implementation of the above described
kinematical setting. The canonical variables A and E (or functions of these),
which are defined in the unconstrained (thus unphysical) phase space are re-
placed by quantum operators acting on some Hilbert space of states. This results

4 This is true for any generally covariant theory, which means that a theory whose
gauge group contains the diffeomorphism group of the underlying manifold has a
weakly vanishing Hamiltonian. Here weakly vanishing refers to vanishing on physical
configurations.
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in the promotion of Poisson brackets to commutators. In other words, an algebra
of observables should act on a Hilbert space. More precisely, one establishes an
isomorphism between the Poisson algebra of classical variables and the algebra
generated by the corresponding Hermitian operators by introducing a linear op-
erator representation of this Poisson algebra. In the simplest case, the quantum
states are normalizable functionals over configuration space, i.e. functionals of
the connection Ψ(A). The subset of physical states is obtained from the set of
all wavefunctions on M by imposing the quantum analogues of the contraints,
i.e. by requiring the physical states to lie in the kernel of all quantum constraint
operators5

The space of physical states must have the structure of a Hilbert space,
namely a scalar product, in order to be able to compute expectation values. This
Hilbert structure is determined by the requirement that real physical observables
correspond to self-adjoint operators. In order to define a Hilbert structure on
the space of physical states, it is convenient (althought not strictly necessary)
to define first a Hilbert structure on the space of unconstrained states. This
is because we have a much better knowledge of the unconstrained observables
than of the physical ones. If we choose a scalar product on the unconstrained
state space which is gauge invariant, then there exist standard techniques to
“bring it down” to the space of the physical states. Thus, we need a gauge and
diffeomorphism invariant scalar product, with respect to which real observables
are self-adjoint operators.

2.2 Basic Definitions

In this subsection we start with the actual topic of the lecture, the construction
of loop quantum gravity. Space–time is assumed to be a 4-dimensional Lorentzian
manifold M with topology R ×M , where M is a real analytic and orientable
3-manifold. For simplicity we consider it as compact, e.g. S3. Loosely speaking
M represents “space” while R refers to “time”.

On M we define a smooth, Lie-algebra valued connection one-form A, i.e.
A(x) = Ai

a(x) τi dx
a, where x are local coordinates on M , Ai

a(x) ∈ C∞(M), and
τi = (i/2)σi are the SU(2) generators (in the fundamental representation) with
σi being the Pauli matrices. The indices a, b, c = 1, 2, 3 play the role of tangent
space indices while i, j, k = 1, 2, 3 are abstract internal su(2) := Lie(SU(2))
indices6. We call A = {A} the space of smooth connections on M and denote
continuous functionals onA as Ψ(A). These functionals build a topological vector
space L under the pointwise topology.
5 A distinct quantization method is the reduced phase space quantization, where the
physical phase space is constructed classically by solving the constraints and factoring
out gauge equivalence prior to quantization. But for a theory as complicated as
general relativity it seems impossible to construct the reduced phase space. The two
methods could lead to inequivalent quantum theories. Of course, it is possible, in
principle, that more than one consistent quantum theory having general relativity
as its classical limit might exist.

6 Mathematically more sophisticated one would consider principal G-bundles over M ,
with structural group G = SU(2) (i.e. compact and connected). Let A be the space of
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2.3 The Construction of a Hilbert Space H
In order to define a Hilbert spaceH based on the above linear space L of quantum
states Ψ(A), one needs to introduce an inner product, i.e. an appropriate measure
on the space of quantum states for which the appearance of the compact gauge
group SU(2) turns out to be essential. Furthermore we demand the following
properties of H:

• H should carry a unitary representation of SU(2)
• H should carry a unitary representation of Diff(M) .

We consider a special class of functions of the connection in L, the cylindrical
functions. For their construction we need some tools, namely holonomies and
graphs.

Holonomy. Let a curve γ be defined as a continuous, piecewise analytic map
from the intervall [0, 1] into the 3-manifold M ,

γ : [0, 1] −→ M (4a)

s �−→ {γa(s)} , a = 1, 2, 3 . (4b)

The holonomy or parallel propagator U [A, γ], respectively, of the connection A
along the curve γ is defined by

U [A, γ](s) ∈ SU(2) , (5a)

U [A, γ](0) = 1 , (5b)

d

ds
U [A, γ](s) + Aa

(
γ(s)

)
γ̇a(s)U [A, γ](s) = 0 , (5c)

where γ̇(s) := dγ(s)
ds is the tangent to the curve. The formal solution of (5c) is

given by

U [A, γ](s) = P exp

∫
γ

A = P exp

∫
γ

ds γ̇aAi
a

(
γ(s)

)
τi , (6)

in such a way that for any matrix-valued function A
(
γ(s)

)
, which is defined

along γ, the path ordered expression (6) is given in terms of the power series
expansion

P exp

∫ 1

0

dsA
(
γ(s)

)
= 1+

∫ 1

0

dsA
(
γ(s)

)
+

∫ 1

0

ds

∫ s

0

dtA
(
γ(t)

)
A
(
γ(s)

)
+ . . . . (7)

smooth connections on the bundle. As a result of the orientability of M the principal
SU(2)-bundles are topologically trivial. Hence the SU(2) connections on the bundle
can be represented by a su(2)-valued 1-form on M .
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The effect of path ordering P appears in the product of matrices which are
always ordered according to the modulus of the parameter, i.e. in the third term
of (7) t is always smaller (or equal) than s.

In a later section we will focus our attention to Wilson loops, which are traces
of the holonomy of A along a closed curve γ, γ(0) = γ(1), i.e. a loop, which in
the following is denoted by α,

T [A,α] = TrU [A,α] . (8)

They are by construction gauge invariant functionals of the connection.
The key successful idea of the loop approach to quantum gravity [13] is to

choose the loop states, namely the states (9) as the basis states for quantum
gravity, i.e.

Ψα(A) = TrU [A,α] . (9)

These states are extended to disconnected loops, or multiloops, respectively,
(collections of a finite number of closed curves {α1, . . . , αn}), which are also
denoted with α, by defining Ψα(A) =

∏
i TrU [A,αi]. These states have a number

of remarkable features: they allow us to control completely the solution of the
diffeomorphism constraint, and they “largely” solve the Hamiltonian constraint,
as we will see later. In QCD, states of this kind are unphysical, because they
have infinite norm (they are “too concentrated”, or “not sufficiently smeared”).
If in QCD we artificially declare these states to have finite norm, we end up
with an unphysically huge, non-separable Hilbert space. In gravity, on the other
hand, these states, or, more precisely, the equivalence classes of these states
under diffeomorphisms, define finite norm states. They are not too concentrated
since in a sense they are – by diffeomorphism invariance – “smeared all over the
manifold”. Thus, they provide a natural and physical way to represent quantum
excitations of the gravitational field.

For some time, however, a serious problem for loop quantum gravity was
given by the fact that the states (9) form an overcomplete basis. The problem
was solved in [14] by introducing the spin network states, which are combinations
of loop states that form a genuine (non-overcomplete) basis. In the sequel, these
spin network states are going to be constructed.

Graphs. The next important tools that we need are graphs. A graph
Γn = {γ1, . . . , γn} is a finite collection of n (oriented) piecewise analytic curves
or edges γi, i = 1, . . . , n, respectively, embedded in the 3-manifoldM , that meet,
if at all, only at their endpoints. As an example, consider the graph Γ3 in Fig. 1
which is constructed of three curves γi, denoted as links.

Cylindrical Functions. Now pick a graph Γn as defined above. For each of
the n links γi of Γn consider the holonomy Ui(A) := U [A, γi] of the connection
A along γi. Every (smooth) connection assigns a group element gi ∈ SU(2) to
each link γi of Γ via the holonomy, gi ≡ Ui(A) = P exp

∫
γ
A. Thus an element of
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γ

γ

1

3

2γ
3Γ :

Fig. 1. A simple example of a graph.

[SU(2)]n is assigned to the graph Γn. The next step is to consider complex-valued
functions fn(g1, . . . , gn) on [SU(2)]n,

fn : [SU(2)]n → C . (10)

These functions are Haar-integrable by construction, i.e. finite with respect to
the Haar measure of [SU(2)]n which is induced by that of SU(2) as a natural
extension in terms of products of copies of it.

Hence, given any graph Γn and a function fn, it is now straightforward to
define the states that are required for the construction of the Hilbert space as

ΨΓn,fn(A) := fn(U1, . . . , Un) . (11)

These functionals, which depend on the connection only via the holonomies, are
the so-called cylindrical functions7. They form a dense subset of states in L, the
above defined space of continuous smooth functions on A. Thus the exclusive
use of this special class of functions is justified for the construction of the Hilbert
space.

As an example we consider the cylindrical function corresponding to the
graph Γ3 in Fig. 1. Let f3 be defined as

f3(U1, U2, U3) := Tr(U1U2U3) . (12)

Hence it follows that the cylindrical function corresponding to Γ3 is given by

ΨΓ3,f3(A) = Tr (U [A, γ1]U [A, γ2]U [A, γ3]) . (13)

An important property of cylindrical functions which turns out to be essential for
the definition of an inner product is the following. A cylindrical function based
on a graph Γ can always be rewritten as one which is defined according to Γ̃ ,
where Γ ⊆ Γ̃ , i.e. there exists a bigger graph Γ̃ that contains Γ as a subgraph.
One obtaines

ΨΓ,f = ΨΓ̃ ,f̃ (14)

7 The name cylindrical function stems from integration theory on infinite-dimensional
manifolds, where they are introduced to define cylindrical measures. One can view
the cylindrical function associated to a given graph as being constant with respect to
some (in fact, most) of the dimensions of the space of connections, i.e. as a cylinder
on that space.
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by simply taking f̃ to depend only on those group elements Ui that belong to
the links in Γ but not to Γ̃ . In other words, any two cylindrical functions can
always be viewed as being defined on the same graph which is just constructed
as the union of the original ones. Given this property, it is now straightforward
to define a scalar product for any two cylindrical functions f and g by

〈ΨΓ,f |ΨΓ,g〉 :=
∫
[SU(2)]n

dU1 . . . dUn f(U1, . . . , Un) g(U1, . . . , Un) . (15)

Here dU1 . . . dUn is a shorthand notation for the induced Haar measure on
[SU(2)]n. Furthermore, the scalar product (15) is invariant under local SU(2)
transformations and diffeomorphisms.

The required unconstrained Hilbert space H of quantum states is obtained
by completing the space of all finite linear combinations of cylindrical functions
(for which the scalar product is also defined) in the norm which is induced by

the quadratic form (15) on a cylindrical function as ‖ΨΓ,f‖ = 〈ΨΓ,f |ΨΓ,f〉1/2.
This Hilbert space H of loop quantum gravity (which is non-separable) has the
properties we required in the beginning of the section, namely

• H carries a unitary representation of local SU(2)

• H carries a unitary representation of Diff(M) .

The unitary representations on H are naturally realized on the quantum states
ψ(A) ∈ H in terms of the transformation of their arguments. Remember that
the states were defined in (11) as cylindrical functions, i.e. they depend on the
connections only via holonomies along the links of the underlying graph.

Under local SU(2) gauge transformations the connection A transforms in-
homogeneously like a gauge potential. Nevertheless, the holonomy turns out
to have a homogeneous transformation rule. Similarly, if one considers spatial
diffeomorphisms φ : M → M , one finds that the connection transforms as a
one-form. This induces the transformation of the holonomy as a distortion of
the curve γ along which it is defined, and thus of the graph Γ which underlies
the cylindrical functions. In other words, a representation of the diffeomorphism
group is imprinted on the holomonies.

These transformation rules give rise to the above mentioned representations
on the Hilbert space H. The fact that H carries unitary representations stems
from the invariance of the scalar product (15) under local SU(2) transformations
and spatial diffeomorphisms.

There are several mathematical developements connected with the construc-
tion given above. They involve projective families and projective limits, gen-
eralized connections, representation theory of C∗-algebras, measure theoretical
techniques, and others. These further developements, however, are not needed for
the following, and for understanding the basic physical results of loop quantum
gravity. For details and references on these developements, see [15].
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2.4 A Basis in the Hilbert Space

We now construct an orthonormal basis in the Hilbert space H. We begin by
defining a spin network, which is an extension of the notion of graph, namely a
colored graph. Consider a graph Γ with n links γi, i = 1, . . . , n, embedded in the
3-manifold M . To each link γi we assign a non-trivial irreducibel representation
of SU(2) which is labeled by its spin ji or equivalentely by 2ji, an integer which
is called the color of the link. The Hilbert space on which this irreducible spin-ji
representation is defined is denoted by Hji .

Next, consider a particular node p, say a k-valent one. There are k links
γ1, . . . , γk that meet at this node. They are colored as j1, . . . , jk. Let
Hj1 , . . . ,Hjk be the Hilbert spaces of the representations associated to the k
links. Consider the tensor product of these Hilbert spaces

Hp = Hj1 ⊗ . . .⊗Hjk . (16)

Fix, once and for all, an orthonormal basis in Hp. Now, the choice of an element
Np of this basis is called a coloring of the node p.

A (non-gauge invariant) spin network S is then defined as a colored embedded
graph, namely it is a graph embedded in space in which links as well as nodes
are colored. That is, it is an embedded graph plus the assignement of a spin
ji to each link γi and the assigmenet of a basis element Np to each node p. A
spin network is thus a triple S = (Γ, j,N). The vector notations j and N are
abbreviations for j = {ji}, i = 1, . . . , n, the collection of all irreducible SU(2)
representations associated to the n links in Γ , and N = {Np} stands for the
basis elements attached to the nodes.

Now we are able to define a spin network state ΨS(A) as a cylindrical function
fS associated to the spin network S whose graph is Γ , as

ΨS(A) = ΨΓ,fS (A) = fS(U [A, γ1], . . . , U [A, γn]) . (17)

The cylindrical function fS is constructed by taking the holonomy along each
link of the graph in that irreducible representation of SU(2) which is associated
to the link, and contracting the holonomy matrices with the vector Np at each
node p where the links meet, giving

fS(U1, U2, . . . , Un) =
∏
links i

Rji(Ui)⊗
∏

nodes p

Np . (18)

Here Rji(Ui) is the representation matrix of the holonomy Ui in the spin-ji
irreducible representation of SU(2) associated to a link γi, i = 1, . . . , n. The
contraction is possible because Np is an element of the tensor product of the
Hilbert spaces associated to the links that meet at the node. Therefore it can be
seen as a tensor with one index in each of these spaces. On the other hand, the
holonomies in the representation ji can be seen as matrices between the same
spaces. A moment of reflection shows that the indices match exactly.

By varying the graph, the colors of the links and the basis elements at the
nodes, we can construct a family of states, which can all be normalized. At last,
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using the well-known Peter–Weyl theorem, it can easily be shown that any two
distinct states ΨS are orthonormal,

〈ΨS |ΨS′〉 = δSS′ (19a)

= δΓ,Γ ′δj,j0δN ,N 0 , (19b)

and that if Ψ is normal to every spin network state, then Ψ = 0. Therefore
the spin network states form a complete orthonormal basis in the kinematical
Hilbert space H.

2.5 The SU(2) Gauge Constraint

The physical quantum state space Hphys is obtained by imposing the quantum
constraint equations on the Hilbert space H. We want to impose the quantum
constraints one after another as it is shown in Fig. 2.

H SU(2)−→ H0
Diff(M)−→ Hdiff

bH−→ Hphys

↓ ↓ ↓ ↓

Ψ(A) −→ |S> −→ |s> −→ ?

Fig. 2. A step by step construction of the physical Hilbert space.

In this diagram the first line refers to the imposition of the quantum con-
straints yielding the appropriate invariant Hilbert spaces, while the second line
gives the corresponding basis. The question mark stands for the fact that the
explicit construction of the states in the physical Hilbert space is not yet un-
derstood. This is not surprising, since having the complete set of these states
explicitely would amount to having solved the theory completely, a much stronger
result than what we are looking for.

We begin here the process of solving the constraint by first considering the
SU(2) gauge constraint. An SU(2) gauge transformation λ(x) acts on the con-
nection in the well known fashion A→ Aλ, and they act on the quantum wave
functionals Ψ(A) by transforming the argument A. Since the basis states we are
considering depend on the connection A through the holonomy, which trans-
forms homogeneously, the transformation properties of the states are easy to
work out. In fact, a moment of reflection shows that an SU(2) gauge transfor-
mation acts on a spin network state simply by SU(2) transforming the coloring
of the nodes Np. More precisely, the spaces Hp carry a representation of SU(2),
and are transformed by the SU(2) element λ(xp), where xp is the point of the
manifold in which the node p lies.



Loop Quantum Gravity and the Meaning of Diffeomorphism Invariance 291

It is then easy to find the complete set of gauge invariant states. The Hilbert
space Hp, being a tensor product of irreducible representations, can be decom-
posed into its irreducible parts,

Hj1 ⊗ . . .⊗Hjk =
⊕
J

(HJ)
kJ . (20)

Here kJ denotes the multiplicity of the spin-J irreducible representation. Among
all subspaces of this decomposition we are interested in the SU(2) gauge invariant

one (the singlet), i.e. the J = 0 subspace, denoted as (H0)k0 . We pick an arbitrary
basis in this subspace, and assign one basis element Np to the node p. A spin
network in which the coloring of the nodes is given by such invariant tensors Np

is called a gauge invariant spin network (often, the expression spin network is
used for the gauge invariant ones). The spin network states constructed in terms
of gauge invariant spin networks solve the gauge constraint and form a complete
orthonormal basis in H0, the SU(2) gauge invariant Hilbert space.

The quantities Np are called intertwiners. They are invariant tensors with
indices in different irreducible SU(2) representations. They provide the possibil-
ities to couple representations of SU(2), i.e. they map the incoming irreducible
representations at a node to the outgoing ones8. Thus they are given by standard
Clebsch–Gordon theory.

�� ��

��
��
��
��j

j1

pp

j2 p

j1

j3
j2

a.) b.) c.)

Fig. 3. Invariant tensors at n = 1, 2, 3-valent nodes.

To clarify the mathematics of the intertwiners, consider some examples. In
the case of a 1-valent node as shown in Fig. 3a, there is no invarinat tensor, hence
the dimensionality of the corresponding Hilbert spaceH0 is zero. Considering on
the other hand Fig. 3b with a 2-valent node p, there exists a single intertwiner

8 The denotation “incoming” and “outgoing” are just convenient labelings here. Ac-
tually one may wonder why we don’t really care about the orientation of the links
in the graph. This happens just because it can be neglected in the case where SU(2)
acts as gauge group, being a consequence of the following. In general, an inversion
of the orientation of a link γ with associated irreducible representation j would lead
to a change of this representation to its conjugate j∗. But since for SU(2) j and j∗

are unitary equivalent, considerations concerning the orientation are simplified, and
we don’t really worry about it in these lectures.
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only if the colors of the links are equal, which is

(Np)j1j2 = δj1j2 . (21)

The last and most interesting example is Fig. 3c with a trivalent node, which
corresponds to the coupling of three spins, well-known from the quantum theory
of angular momentum. As long as the representations associated to the links
satisfy the Clebsch–Gordan condition |j2− j3| ≤ j1 ≤ j2+ j3, once j2 and j3 are
fixed (analogously for any other pair), a unique intertwiner exists because there
is only one way of combining three irreducible representations in order to obtain
a singlet representation. The invariant tensor is then given by nothing but the
familiar Wigner 3j-coefficient, which is (apart from normalization)

(Np)n1n2n3 =

(
j1 j2 j3
n1 n2 n3

)
, (22)

otherwise the dimension of H0 is zero again.
Let’s now consider a simple example of a spin network state. We take the

spin network in Fig. 4 corresponding to a graph with two trivalent nodes and
three links joining them. Let two of the links carry (fundamental) spin-1/2 rep-
resentations, while the third link has a spin-1 representation attached to it.

j

j

1 = 1/2

S =
N N12

2 = 1

j
3 = 1/2

Fig. 4. A simple spin network with two trivalent nodes.

The elements N1 and N2 of an appropriate basis of invariant tensors are as-
signed to the nodes. The corresponding spin network state then reads explicitely

ΨS(A) = R
1
2 [U1]A

B R1[U2]i
j R

1
2 [U3]C

D (N1)
AiC (N2)BjD

= (U1)A
B R1[U2]i

j (U3)C
D

(
1
2 1 1

2

A i C

) (
1
2 1 1

2

B j D

)
. (23)

Here i, j = 1, 2, 3 denote vector and A,B, . . . = 1, 2 spinor indices, respectively.
The holonomy is abbreviated as Uk := U [A, γk].

Finally, we mention that a spin network state can be decomposed into loop
states. This decomposition can be done in general by using the following rule,
which follows from well-known properties of SU(2) representation theory. Re-
place each link of the graph with associated spin j with 2j parallel strands. Anti-
symmetrize these strands along each link (obtaining a formal linear combination
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of drawings). The intertwiners at the nodes can be represented as collections of
segments joining the strands of different links. By joining these segments with
the strands one obtains a linear combination of multiloops. The spin network
states can then be expanded in the corresponding loop states. For details of this
construction, see [14].

Applying this rule to the above example (23), we obtain the following. Writing
out the explicit expression for the spin-1 representation in terms of spin-1/2
representations (which we will not do here), and using the explicit form of the
Clebsch–Gordan coefficient, it is not hard to see that

ΨS(A) = Ψα − Ψβ , (24)

where β is the loop obtained by joining the four segments γ1, γ2, γ3, γ2, and α
is the double loop {α1, α2}. Here α1 is obtained by joining γ1 and γ2, while α2
is obtained by joining γ2 and γ3. For a graphical illustration, see Fig. 5.

= -

γ1

γ

γ3

2

Fig. 5. The decomposition of the spin network state (23) into loop states.

2.6 Operators on H
We now have a gauge invariant kinematical Hilbert space of quantum gravity
including an orthonormal basis of spin network states at our disposal. Below, we
want to construct self-adjoint SU(2) gauge invariant operators, i.e. linear maps
L : H → H, that might even be of physical interest.

In this paragraph we will straightforwardly construct well-defined gauge in-
variant operators and think about their physical interpretation in the next sec-
tion. We proceed as in usual quantum mechanics by constructing multiplicative
and derivative operators, corresponding to “position” and “momentum”, respec-
tively. See also [17] and [18].

The simplest operator one can imagine is given by the holonomy itself. Given
a curve γ, take the holonomy of the connection along γ to define the multiplica-
tive operator

Û(γ) = U [A, γ] . (25)

However, this operator is not SU(2) gauge invariant. In order to obtain gauge
invariance, we simply consider the trace of the holonomy along a loop γ, resulting
in the operator

T̂ [γ] = TrU [γ] . (26)
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This definition provides a well-defined, gauge invariant and multiplicative oper-
ator9 acting on a state functional as

T̂ [γ]ΨS(A) =

(
P exp

∫
γ

A

)
ΨS(A) = U [A, γ]ΨS(A) . (27)

Hence the definition of multiplicative operators didn’t seem to cause any prob-
lems.

The construction of a gauge invariant derivative operator turns out to be
more subtle. The configuration variable in our approach is the connection A(x),
thus the conjugate momentum operator would be some functional derivative with
respect to it. The same statement is obtained by considering the Poisson algebra
(3) and proceeding as usual in quantum field theories, i.e. formally replacing Ea

i

with the functional derivative (we neglect the Immirzi parameter β),

Ea
i (x) −→ − i~G

δ

δAi
a(x)

. (28)

This object is an operator-valued distribution rather than a genuine operator, so
it has to be integrated against test functions or, in other words, it has to be suit-
ably smeared in order to be well-defined. Thus, to transform (28) into a genuine
operator and regularize expressions involving it, an appropriate smearing over a
surface Σ has to be performed. Roughly, this can be seen as follows. The func-
tional derivative (28) with respect to the connection one-form A(x) is a vector
density of weight one, or equivalentely a two-form, since it is always possible to
transform vector densities into a two-forms by contraction with the Levi–Civita
density. Furthermore, since two-forms are naturally integrated against surfaces,
a natural geometrical, i.e. coordinate independent regularization scheme is sug-
gested. And indeed, this turns out to be the right way of handling the problem!
In fact, smearing (28) as described above, will give us a well-defined operator
which is coordinate invariant and finite.

We start by considering a surface, that is a two-dimensional manifold Σ
embedded in M . We use local coordinates xa, a = 1, 2, 3, on M and let σ =
(σ1, σ2) be coordinates on the surface Σ. Thus the embedding is given by

Σ : (σ1, σ2) �→ xa(σ1, σ2) . (29)

We define an operator (using G = ~ = 1)

Êi(Σ) := −i
∫
Σ

dσ1dσ2 na(σ)
δ

δAi
a

(
x(σ)

) , (30)

9 It is really the choice of this so-called Wilson loops which is the characteristic feature
of loop quantum gravity. Indeed, the loop approach can be built on Wilson loops
and appropriate momentum operators ( the so-called loop variables) which form a
closed algebra and thus were used as the starting point for canonical quantization.
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where

na(σ) = εabc
∂xb(σ)

∂σ1
∂xc(σ)

∂σ2
(31)

is the normal one-form on Σ and εabc is the Levi-Civita tensor of density weight
(−1).

The next step is to compute the action of this operator on holonomies U [A, γ],
which are the basic building blocks of the gauge invariant state functionals,
i.e. the spin network states. The coordinates of the curve γ in M , which is
parametrized by s, will be denoted in the following as xa(s) := γa(s).

We begin with the functional derivative of holonomies. A detailed derivation
of the relevant formulas can be obtained using the first variation of the defining
differential equation (5c) of the holonomy with respect to the connection, see [19].
Consider the surface Σ and a curve γ along which the holonomy was constructed
in the simplest case where they have only one individual point of intersection P ,
which is not supposed to lie at the endpoints of γ, as shown in Fig. 6.

��
��
��
��

��

��

γ

Σ

P

γ

2

1

Fig. 6. A curve that intersects the surface in an individual point.

For later convenience the curve is devided into two parts, γ = γ1 ∪ γ2, one
lying “above”, the other “below” the surface. We get

δ

δAi
a(x(σ))

U [A, γ] =
δ

δAi
a(x(σ))

(
P exp

∫
γ

ds ẋaAi
a(x(s)) τi

)

=

∫
γ

ds
∂xa

∂s
δ3
(
x(σ),x(s)

)
U [A, γ1] τi U [A, γ2] . (32)

Here U [A, γ1] and U [A, γ2] are the parallel propagators along those segments
of γ which “start” or “end”, respectively, on P = Σ ∩ γ �= ∅, see Fig. 6. In
order to avoid confusion, recall that x(σ) are the coordinates of the surface Σ
embedded in the 3-manifold M , while x(s) are the coordinates of γ = γ1 ∪ γ2,
just as defined in the beginning of sect. 2.3.
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We are now prepared to care about the action of the operator Êi(Σ) on
U [A, γ]. Using (32), the result can immediately be evaluated,

Êi(Σ)U [A, γ]

= −i
∫
Σ

dσ1dσ2 εabc
∂xa(σ)

∂σ1
∂xb(σ)

∂σ2
δ

δAi
c

(
x(σ)

) U [A, γ]
= −i

∫
Σ

∫
γ

dσ1dσ2ds εabc
∂xa

∂σ1
∂xb

∂σ2
∂xc

∂s
δ3
(
x(σ),x(s)

)
×

× U [A, γ1] τ
i U [A, γ2] . (33)

A closer look at this result reveals a great simplification of the last integral since
one notices the appearance of the Jacobian J for the coordinate transformation
(σ1, σ2, s)→ (x1, x2, x3), namely

J ≡ ∂ (σ1, σ2, s)

∂ (x1, x2, x3)
= εabc

∂xa

∂σ1
∂xb

∂σ2
∂xc

∂s
. (34)

In our case, we may assume that the Jacobian is non-vanishing, since we have
required that a single, non-degenerate point of intersection of Σ and γ exists.
The Jacobian (34) and the integral (33) would vanish, if the tangent vectors
given by the partial derivatives in (34), would be coplanar, i.e. if a tangent
∂xa,b(σ)/∂σ1,2 to the surface would be parallel to the tangent ∂xc(s)/∂s of the
curve. This happens, for instance, if the curve lies entirely in Σ. Then there would
be of course no individual point of intersection. We will discuss the various cases
a little more at the end of this section.

But let’s come back to the actual topic – the simplification of (33). We now
carry out the described coordinate transformation, which puts us in the position
to integrate out the 3-dimensional δ-distribution. We get for the case of a single
intersection the interesting result10∫

Σ

∫
γ

dσ1dσ2ds εabc
∂xa(σ)

∂σ1
∂xb(σ)

∂σ2
∂xc(s)

∂s
δ3
(
x(σ),x(s)

)
= ±1 , (35)

where the sign depends on the relative orientation of the surface to the curve
(this sign will soon become irrelevant). Hence we obtain the simple result

Êi(Σ)U [A, γ] = ±i U [A, γ1] τ i U [A, γ2] . (36)

So we see that the action of the operator Êi(Σ) on holonomies consists of in-
serting the matrix (±i τ i) at the point of intersection. Taking advantage of this
result, the generalization to the case of more than one single point of intersection
is trivial – it is just the sum of all such insertions.

10 The integer-valued integral is indeed an analytic (coordinate independent) expression
for the intersection number of the surface Σ and the curve γ. It is zero in the case
of no intersection at all.
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Putting all this together, and using P to denote different separate points of
intersection, we have:

Êi(Σ)U [A, γ] =




0 if Σ ∩ γ = ∅
∑
P

±i U [A, γP1 ] τ i U [A, γP2 ] if P ∈ Σ ∩ γ .
(37)

A further generalization of (37) is needed in view of spin networks, where arbi-
trary irreducible spin-j representations are associated to links and the accompa-
nying holonomies, denoted by Rj

(
U [A, γ]

)
. We obtain easily (again for just one

single point of intersection, which may be extended analogously to (37))

Êi(Σ)Rj
(
U [A, γ]

)
= ±i Rj

(
U [A, γ1]

)
(j)τ iRj

(
U [A, γ2]

)
. (38)

Here (j)τ i is the corresponding SU(2) generator in the spin-j representation.
We now have a well-defined operator at our disposal. One may wonder why

this smearing scheme gives a well-defined operator, since we have used only a two-
dimensional smearing over a surface Σ instead of a three-dimensional one over
M , as one might have expected. The answer is that the state functionals have
support on one dimension, or in other words, they contain just one-dimensional
excitations.

The action of Êi(Σ) on a spin network state ΨS(A) follows immediately
from the above considerations. We take a gauge invariant spin network S which
intersects the surface Σ at a single point. The holomony along the crossing link
γ being in the spin-j representation of SU(2). Then we split11 the spin network
state ΨS(A) into a part consisting of this holonomy Rj

(
U [A, γ]

)
along γ, and

the “rest” of the state, which is denoted by ΨS−γ(A). Thus we obtain

ΨS(A) = Ψmn
S−γ(A) R

j
(
U [A, γ]

)
mn

. (39)

We used the index notation with m and n being indices in the Hilbert space that
is attached to γ. Obviously ΨS−γ(A) is not gauge invariant any more. Using (38)
we get immediately

Êi(Σ)ΨS(A) = ±i
[
Rj

(
U [A, γ1]

)
(j)τ iRj

(
U [A, γ2]

)]
mn

Ψmn
S−γ(A) . (40)

Eventually, we see that Êi(Σ) spoils gauge invariance, since the resulting func-
tional is not an element of H0 any more. We construct a gauge invariant deriva-
tive operator in the next paragraph.

An SU(2) Gauge Invariant Operator. Gauge invariance is spoiled in (40)
by the insertion of a matrix τi (which is gauge covariant, but not gauge invariant)

11 To see how this is possible recall the definitions (17) and (18) of a spin network state
as a cylindrical function.
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at the point of intersection. We can try to construct a gauge invariant operator
simply by squaring this matrix, namely by defining

Ê 2(Σ) := Êi(Σ) Êi(Σ) , (41)

where summation over i = 1, . . . , 3 is assumed. Let us compute the action of this
operator on a spin network that has only a single point of intersection with Σ.
Using the same notation as above, we obtain

Ê 2(Σ)ΨS(A)

= −
[
Rj

(
U [A, γ1]

)
(j)τ i (j)τ iRj

(
U [A, γ2]

)]
mn

Ψmn
S−γ(A)

=
[
Rj

(
U [A, γ1]

)
j(j + 1)Rj

(
U [A, γ2]

)]
mn

Ψmn
S−γ(A)

= j(j + 1)
[
Rj

(
U [A, γ1]

)
Rj

(
U [A, γ2]

)]
mn

Ψmn
S−γ(A)

= j(j + 1)ΨS(A) . (42)

Here C := (j)τ i (j)τ i = −j(j + 1)× 1 is the Casimir operator of SU(2).
Thus it seems we are lucky this time. We have found the important result that

the spin network state is an eigenstate of this seemingly gauge invariant operator
and even calculated its eigenvalues. But we have calculated this result in case
of a single intersection between S and Σ. It is easy to convince oneself that for
several points of intersection crossterms would appear that again spoil the gauge
invariance of Ê 2(Σ)ΨS(A). However, using a simple trick, these crossterms may
be eliminated in order to construct a genuinely SU(2) gauge invariant operator
in the following way.

Since we have shown that in the case of a single intersection Ê 2(Σ) turns
out to be an operator of the type we are looking for, it is natural to consider
a partition ρ of Σ into n small surfaces Σn, where

⋃
nΣn = Σ, in such a way

that for any given spin network S all different points of intersection P lie in
distinct surfaces Σn, as it is shown in Fig. 7 for a curve γ which intersects the
surface several times. Clearly n = n(ρ) depends on the degree of refinement of
the partition.

γ

Σn

Σ

Fig. 7. A partition of Σ.
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Hence, we obtain a new operator Â(Σ) which is defined in the limit of in-
finitely fine triangulations or partitions of Σ, respectively, as

Â(Σ) := lim
ρ→∞

∑
n=n(ρ)

√
Êi(Σn) Êi(Σn) . (43)

The square root is introduced for later convenience. It can furthermore be shown,
that this operator is defined independently of the partition ρ chosen. For sim-
plicity, we disregard spin networks that have either a node lying on Σ or a
continuous, i.e. infinite number of intersection points with it, cf. Fig. 8.

p
31

p
p
2

Σ

N

N2

1

Fig. 8. A simple spin network S intersecting the surface Σ.

Then, using (42) we obtain immediately the action of Â(Σ) on a spin network
state as

Â(Σ)ΨS(A) =
∑

P ∈S ∩Σ

√
jP (jP + 1) ΨS(A) . (44)

Hence, each link of the spin network S labelled by the irreducible representation
j of SU(2) which crosses the surface transversely in the small surface Σn, would
contribute a factor of

√
j(j + 1). Other subsurfacesΣn′ that have no intersection

with a link of S would give no contribution. Since the operator is diagonal on
spin network states and real on this basis, it is also self-adjoint.

To summarize, we have obtained for each surface Σ ∈ M a well-defined
SU(2) gauge invariant and self-adjoint operator Â(Σ), which is diagonalized
in the spin network basis on H0, the Hilbert space of gauge invariant state
functionals. The corresponding spectrum (with the restrictions mentioned) is
labeled by multiplets j = (j1, . . . , jn), i = 1, . . . , n, and n arbitrary, of positive
half integers ji. This is called main sequence of the spectrum and is given (up
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to constant factors) by

Aj(Σ) =
∑
i

√
ji(ji + 1) . (45)

As mentioned, (45) is not the result of the most general case, since we ex-
cluded crossings of S and Σ, in which the intersection points P may be nodes
p of the spin network. To complete the picture and include all cases, we finally
give the full spectrum of Â(Σ), which was calculated in [20] directly in the loop
representation and in [21] in the connection representation. In the general case
we may divide the links that meet at the nodes on the surface into three classes
according to their relative position with respect to the surface, see Fig. 9. First,
there are the “tangential” (t) links which lie entirely in Σ. The remaining two
classes are given by the “up” (u) and “down” (d) links according to the (arbi-
trary) side of Σ they lie on.

j d

j u

j t
p

Fig. 9. The three classes of links that meet in a node on the surface.

The full spectrum of (43) (the so-called second sequence) is labeled by n-
tuplets of triplets of positive half integers ji, namely ji = (jui , j

d
i , j

t
i ), i =

1, . . . , n, and n arbitrary. It is given by

Aji
(Σ) =

1

2

∑
i

√
2jui (j

u
i + 1) + 2jdi (j

d
i + 1)− jti (j

t
i + 1) . (46)

This is the complete spectrum. It contains of course the previous case (45)
corresponding to to jui = jdi and jti = 0.

3 Quantization of the Area

In the previous section we have described the construction and diagonalization
of the SU(2) gauge invariant and self-adjoint operator Â(Σ) using a basis of
spin network states in the kinematical gauge invariant Hilbert space H0. The
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physical interpretation of this operator was totally disregarded. The operator we
have studied is explicitely

Â(Σ) := lim
ρ→∞

∑
n=n(ρ)

√
Êi(Σn) Êi(Σn) . (47)

We now search the corresponding classical quantity. Just as in usual quantum
mechanics this amounts to replacing the quantum operators Êi(Σ) by their
classical analogues.

The conjugate momentum operator, which is essentially given by
δ/δAi

a(x), is the quantum analogue of the (smooth) inverse densitized triad
Ea
i (x), i.e. we have the correspondence

Ea
i (x) ←→ − i~G

δ

δAi
a(x)

, (48)

between classical and quantum quantities, as we already stated in sect. 2.6. We
replace the operator (47) in the classical limit by its analogue (48),

A(Σ) := lim
ρ→∞

∑
n=n(ρ)

√
Ei(Σn)Ei(Σn) , (49)

and study its physical meaning. Here we use again ~ = G = 1. Moreover,

Ei(Σn) =

∫
Σn

dσ1dσ2 na(σ)E
ia
(
x(σ)

)
(50)

is the classical analogue of the smeared version (30) of the operator Êi(Σn)
defined on one specific subsurface Σn of the triangulation ρ of Σ, and

na(σ) = εabc
∂xb(σ)

∂σ1
∂xc(σ)

∂σ2
(51)

is the normal to Σn. For a sufficiently fine partition ρ, i.e. arbitrarily small
surfaces Σn, the integral (50) can be approximated by

Ei(Σn) ≈ ∆σ1∆σ2 na(σ)E
ai
(
xn(σ)

)
, (52)

where xn is an arbitrary point in Σn and
(
∆σ1∆σ2

)
denotes its coordinate area.

Inserting this result back into the classical expression (49) gives

A(Σ) = lim
ρ→∞

∑
n=n(ρ)

∆σ1∆σ2
√
na(σ)Eai

(
xn(σ)

)
nb(σ)Ebi

(
xn(σ)

)
(53a)

=

∫
Σ

d2σ
√
na(σ)Eai

(
x(σ)

)
nb(σ)Ebi

(
x(σ)

)
. (53b)

The second line (53b) follows immediately by noting that (53a) is nothing but the
definition of the Riemann integral. For its evaluation we choose local coordinates
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in such a way that x3(σ) = 0 on Σ and furthermore x1(σ) = σ1, x2(σ) = σ2,
resulting in na = nb = (0, 0, 1). We obtain

A(Σ) =

∫
Σ

d2σ
√
E3i(x)E3i(x) (54a)

=

∫
Σ

d2σ
√
det g(x) g33x (54b)

=

∫
Σ

d2σ
√
g11g22 − g12g21 (54c)

=

∫
Σ

d2σ
√
det (2g) . (54d)

For the derivation of (54b) we used relation (1) between the 3-metric and the
triad variables, which is gab(x) det g(x) = Eai(x)Ebi(x), while the transition
to the next equation is made by using the definition for the inverse of a ma-
trix. Noting that

(
2g
)
is the two-dimensional metric induced by gab on Σ, one

recognizes the result (54d) as the covariant expression for the area of Σ.
In fact, since the classical geometrical observable “area of a surface” is a

functional of the metric, i.e. of the gravitational field, in a quantum theory of
gravity, where the metric is an operator, the area turns into an operator as well.
If this operator reveals a discrete spectrum, this would, according to quantum
mechanics, also imply the discreteness of physical areas at the Planck length.
Thus the area is quantized!

Restoring all neglected constants (and a factor of 16π which occurs in a
detailed calculation) and using the notation and results we obtained in sect. 2.6,
namely the discreteness of the spectrum of Â(Σ), which from now on will be
denoted as area operator, gives the (main sequence of) eigenvalues of the area as

A(Σ) = 16π~G
∑
i

√
ji(ji + 1) . (55)

This formula gives the area of a surface Σ that is intersected by a spin network
S without having nodes lying in it. The quanta are labeled by multiplets j of
half integers as already realized in sect. 2.6. The generalization to the case where
nodes of S are allowed to lie in Σ, yielding the second sequence of eigenvalues,
is given by (46).
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4 The Physical Contents of Quantum Gravity and the
Meaning of Diffeomorphism Invariance

Some questions arise immediately from the results we discussed in the last sec-
tion.

Is A(Σ) observable in quantum gravity?

or equivalentely:

What should a quantum theory of gravitation predict?

These questions are intimately related to the issue of observability in both clas-
sical and quantum gravity – an issue which is far from trivial. Let us begin with
an examination of the classical theory. For a closer look at this topic, we refer
to [22–24].

4.1 Passive and Active Diffeomorphism Invariance

We consider ordinary classical general relativity formulated on a 4-dimensional
manifoldM on which we introduce local coordinates xµ, µ = 0, . . . , 3, abbrevi-
ated by x.

The Einstein equations

Rµν −
1

2
Rgµν = 0 (56)

are invariant under the group of diffeomorphisms Diff(M) of M. Recall that
a diffeomorphism φ is a C∞ map between manifolds that is one-to-one, onto
and has a C∞ inverse. In other words, the diffeomorphism group is formed
by the set of mappings φ : M → M which preserve the structure of M. We
consider diffeomorphisms which are given in local coordinates by the smooth
maps x′µ = x′µ(xν). The inverse transformations are xµ = xµ(x′ν).

Suppose a solution gµν(x) of Einstein’s equations (56) is given, then due to
diffeomorphism invariance, g̃µν(x) is also a solution, where

g̃µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ

(
x(x′)

)
. (57)

There are two geometrical interpretations of (57) known as passive and active
diffeomorphisms.

Passive diffeomorphism invariance refers to invariance under change of co-
ordinates, i.e. the same object is represented in different coordinate systems.
Choose a (local) coordinate system {xµ} in which the metric is gµν(x). In a sec-
ond system {x′µ} the metric is given by g̃µν(x

′). Satisfying (57), both of them
represent the same metric onM.

Active diffeomorphisms on the other hand relate different objects inM in the
same coordinate system. This means that x′µ(x) is viewed as a map associating
one point of the manifold to another point of the manifold. Take for example two
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points P,Q ∈ M and consider two metrics gµν(x) and g̃µν(x), which are both
solutions of (56). Then the distance d between P and Q computed using the two
metrics is different, i.e. dg(P,Q) �= dg̃(P,Q). We have two distinct metrics onM
which both solve Einstein’s equations. These two metrics might still be related
by equation (57). They are related by an active diffeomorphism.

The relations between active and passive diffeomorphisms, as well as the
choice of coordinates, is clarified in Fig. 10.

Coordinate system S’

Coordinate system S

Orbit of the active diff. group Orbit of the passive diff. group

dg gµν (x)Space of functionsSpace of metrics

Fig. 10. The relation between active and passive diffs and the choice of coordinates.

In order to avoid confusion with regard to passive and active diffeomorphisms
in coordinate-dependent considerations, we simply drop coordinates and pass
over to the coordinate-free formulation. Thus we consider the mainfoldM with
metric g, defined as the map

g :M×M→ R (58a)

(P,Q) �→ dg (P,Q) , (58b)

where P,Q ∈ M. Suppose dg solves Einstein’s equations. A diffeomorphism
φ :M→M acts as a smooth displacement over the manifold, resulting in dg̃,

dg̃ (P,Q) = dg
(
φ−1(P ), φ−1(Q)

)
. (59)

Active diffeomorphism invariance is the fact that if dg is a solution of the Einstein
theory, so is dg̃. This shows that Einstein’s theory is invariant under (active!)
diffeomorphisms even in a coordinate free formulation.

General relativity is distinguished from other dynamical field theories by its
invariance under active diffeomorphisms. Any theory can be made invariant un-
der passive diffeomorphisms. Passive diffeomorphism invariance is a property of
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the formulation of a dynamical theory, while active diffeomorphism invariance
is a property of the dynamical theory itself. Invariance under smooth displace-
ments of the dynamical fields holds only in general relativity and in any general
relativistic theory. It does not hold in QED, QCD, or any other theory on a fixed
(flat or curved) background.

4.2 Dirac Observables

Consider a classical dynamical system whose equations of motion do not uniquely
determine its evolution, as pictorially illustrate in Fig. 11. The two solutions ϕ (t)
and ϕ̃ (t) which evolve from the same set of initial data, separate at some later
time t̂, i.e.

ϕ (t) = ϕ̃ (t) if t < t̂ (60a)

ϕ (t) �= ϕ̃ (t) if t ≥ t̂ ≥ 0 . (60b)

Then, as first accurately argued by Dirac, ϕ (t) and ϕ̃ (t) must be physically
indistinguishable or gauge-related, respectively. Otherwise determinism, which
is a basic principle in classical physics, would be lost. Dirac gave the definition
of observables respecting determinism in the following way. A gauge invariant
or Dirac observable is a function O of the dynamical variables that does not
distinguish ϕ (t) and ϕ̃ (t), i.e.

O
(
ϕ (t)

)
= O

(
ϕ̃ (t)

)
. (61)

In other words, only those observables that have the same values on the solu-
tions ϕ (t) and ϕ̃ (t) can be observed. Hence the theory can predict only Dirac
observables.

Does this imply that any physical quantity that we measure is necessarily
a Dirac observable? It turns out that one has to answer in the negative. To
understand this sublety, consider the example of a simple pendulum described
by the variable α which is the deflection angle out of equilibrium. The motion
of the pendulum is given by the evolution of α in time t, namely by α(t). Since
α(t) is predicted by the equation of motion for any time t once the initial data

t

ϕ

t̂

~ϕ (t)
ϕ(t)

Fig. 11. An example for a not uniquely determined evolution of a dynamical system.
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set is fixed, it is a Dirac observable. One should notice that we are actually
describing a system in terms of two physical quantities rather than one, namely
the pendulum itself, described by position α, and a clock measuring the time t.
However, in contrast to position, there is no way how time could be predicted.
It simply tells us “when” we are. Therefore, t is a measureable quantity but it is
not a Dirac observable. To state this more precisely, we introduce the notion of
partial observables. We call t an independent partial observable and α a dependent
partial observable. The Dirac observable is given by α(t).

There is an important relation between Dirac observables and the Hamito-
nian formalism. Dirac observables are characterized by having vanishing Poisson
brackets with the constraints. In fact, the entire constrained system formalism
was built by Dirac with the purpose of characterizing the gauge invaraint ob-
servables (the Dirac observables). To elucidate this feature, consider a classical
dynamical system with canonical Hamiltonian H0, as well as k additional con-
straints

Cm = 0 , m = 1, . . . , k , (62)

defined on phase space. The complete Hamiltonian, which is defined on the full
phase space, is given by

H = H0 +Nm(t)Cm , (63)

with k arbitrary functions Nm(t) that can be interpreted as Lagrangian multi-
pliers. The dynamics of an observable O is given by the Hamiltonian equations

Ȯ = {O, H}+Nm(t){O, Cm} . (64)

From this one recognizes immediately that the evolution is deterministic, and
thus O a Dirac observable, only if

{O, Cm} = 0 ∀ m , (65)

just as claimed.

4.3 The Hole Argument

Dirac’s postulate that only gauge invariant or Dirac observables, respectively, can
be measurable quantities, was applied to general relativity by Einstein himself
in his famous “hole argument” from 1912.

Suppose we have a space–time M including other structures that represent
matter (e.g. scalar fields or particles). Suppose that the matter configuration is
such that there is a hole in space–time, i.e. a region without matter, as indi-
cated in Fig. 12. Let gµν(x) and g̃µν(x) be two distinct metrics which are equal
everywhere in M except for the hole, but nevertheless, both are supposed to
solve Einstein’s equations. Now we introduce a spacelike (initial data) surface
such that the hole is entirely in the future of it. Since the metrics are equal
everywhere outside, they do have the same set of initial data on the surface.
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t = 0 initial data
surface

M

P Q

Fig. 12. The hole argument.

If we now consider the distance between two distinct points P and Q which
are both inside the hole, we note immediately that dg(P,Q) �= dg̃(P,Q), although
the metrics have the same inital conditions. Hence, according to the discussion in
the previous section, dg is not a Dirac observable. So it seems that we uncovered
a mystery of the theory! The distance is not an observable predicted by the
theory. Then the obvious question we have to ask is:

“What is predicted by general relativity at all?”

Einstein was so impressed by this conclusion, that he claimed in 1912 that general
covariance could not be a property of the theory of gravity. It took some time
– three years – until Einstein presented the solution to this puzzle, and thus
got back to general covariance, in 1915. To illustrate his strategy, we consider a
setting similar to the one above, which corresponds to Fig. 12. More precisely,
we consider general relativity and 4 particles denoted by A,B,C and D. Their
trajectories are determined by the equations of motion and they are supposed to
start at the spacelike inital surface, as shown in Fig. 13. Furthermore, we suppose
that A and B meet in i inside the hole, and C and D meet in j inside the hole as
well. Consider now the distance d between the point i and the point j. Is d a Dirac
observable? At first sight, we are in the same situation as above, but there is an
essential subtle difference. Consider now the diffeomorphism that sends gµν(x)
into g̃µν(x). Since the theory is invariant only under a diffeomorphism that acts
on all its dynamical variables, g̃µν(x) is a solution of the Einstein equations only
if the diffeomorphism displaces the trajectories of the particles as well. Thus i
and j will also be displaced by the diffeomorphism. Then, after having performed
the active diffeomorphism, the new distance between the intersection points is

d̃ = dg̃
(
φ(i), φ(j)

)
= dg

(
φ−1φ(i), φ−1φ(j)

)
= dg(i, j) = d . (66)

Hence it follows that this distance is gauge invariant. The distance d between
the itersection points is a Dirac observable.
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t = 0 initial data
surface

M

i
j

A B C D

Fig. 13. A solution to the hole argument.

One can extend this setting also to cases which involve fields. As an example,
consider general relativity and 2 additional fields, namely gµν(x), ϕt(x), and
ϕz(x). Then the area A of the ϕt = ϕz = 0 surface is a Dirac observable as well,
and is given by

A =

∫
ϕt=0
ϕz=0

d2σ
√
det 2g . (67)

For the slightly generalized case of general relativity and three fields, i.e.
gµν(x), ϕt(x), ϕz(x), and ϕΣ(x), the area A(Σ) of the surface determined by

ϕt = ϕz = 0, and ϕΣ ≥ 0 (68)

is again a Dirac observable. It is in this case given by

A(Σ) =

∫
ϕt=0
ϕz=0

d2σ δ(ϕΣ)
√
det 2g . (69)

In general, to define “local” Dirac observables in general relativity we have
to use some of the degrees of freedom of the theory (the particles, the fields)
for localizing a spacetime point or a spacetime region. It is important to notice
that in principle we do not need matter or fields to do so. Instead, we can use
part of the degrees of freedom of the graviational field itself. This strategy was
followed for instance by Komar and Bergman by defining 4 curvature scalars and
using them as physically defined coordinates. While formally correct, the use of
gravitational degrees of freedom for defining observables in general relativity
leads us far away from observables concretely used in the realistic applications
of general relativity, all of which use matter degrees of freedom for localizing the
observables. An example of a realistic observable used in physical applications
of general relativity is the physical distance between two spacetime events, one
on a Global Positioning System (GPS) satellite and one on a Earth based GPS
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station. In this case, matter degrees of freedom (coupled to gravity) localize two
spacetime points and the distance between them is a Dirac observable.

To sum up, we have seen that the puzzle of the hole argument can be resolved.
Physical quantities predicted by general relativity, i.e. Dirac observables, can be
defined inside the hole. But in order to “localize” points, we have to use some
dynamical quantity. The most realistic way of doing so is to use matter. In other
words, Dirac observables are defined in space–time regions which are determined
by dynamical objects.

In the following section, we will see that this definition of localization, which
is necessary in general relativity, implies a profound change of our notions of
space and time.

4.4 The Physical Interpretation

Before considering the conceptual changes in the notions of space and time
brought by general relativity, it is instructive to reflect on the main modifications
that these concepts have undergone in the historical development of physics. The
key developments in this business are related to the names of Descartes (and
Aristotle), Newton, and last but not least, Einstein.

According to Descartes, there is no “space” at all, but only physical objects
which can be in touch with each other. The “position” or location, respectively,
of an object is only defined by the naming of other physical objects close to
it, i.e. the position of a body is the set of those objects to which the body is
contiguous. Equally important is the concept of “motion”, which is defined as
the change of position. Thus motion is determined by the change of contiguity,
i.e. only in relation to other objects. This point of view is denoted relationalism.
Descartes’ definitions of space, position and motion are by the way essentially
the same that were given by Aristotle.

An important historical step was then provided by Newton’s definition of
physical space. According to Newton, “space” exists by itself, independently of
the objects in it. Motion of a body can be defined with respect to space alone,
irrespectlively whether other objects are present. Newton insists on this points,
on the ground that acceleration can be defined absolutely. In fact, it is only
thanks to the fact that acceleration is defined in absolute terms, that the entire
structure of Newton’s mechanics (F = ma) holds. Newton discussed the fact
that acceleration is absolute in the famous example of the rotating bucket, which
shows that the absolute rotation of the water, and not the rotation with respect
to the bucket, has observable consequences. Thus, according to Newton, space
exists independently of objects, weather they are present or not. The location
of objects is the part of space that they occupy. This implies that motion can
be understood without regard to surrounding objects. Similarly, Newton uses
absolute time, leading to a space–time picture which provides an always present
fixed background over which physics takes place. Objects can always be localized
in space and time with respect to this fixed non-dynamical background.

But if there is “space” which is always present, how can it be captured, or
observed? This can be done by using reference systems. The great idea was to
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select some physical bodies (like walls, rules or clocks) and treat them as reference
systems. Physically one has to distinguish the dynamical objects that one wants
to study from reference system objects. They are dynamically decoupled.

In the language introduced earlier, the dynamical objects define dependent
partial observables, while the objects referred to as reference system define inde-
pendent partial observables. Examples for dynamical objects may be the deflec-
tion angle α of a pendulum, or the position x of a particle. The Dirac observables
would then just be α(t) and x(t).

As an example, we take the case of a pendulum. The differential equation gov-
erning this dynamical system is (for small oscillations) just
α̈(t) = −ω2 α(t). The solution is

α(t) = A sin(ωt+ ϕ) . (70)

A state is determined by the constants A and ϕ, or equivalently, by initial po-
sition and velocity at some fixed time. Once the state (A and ϕ) is known, the
functional dependence α(t) between the dependent and independent observables
can be computed. In fact, it is given by (70).

Thus, in the Newtonian scheme, we have a fixed space and a fixed time, re-
vealed by the objects of the reference system. The objects forming the reference
system determine localization in space and in time and define partial observ-
ables (t, above) which are not dynamical variables in the dynamical models one
considers.

In general relativity things change profoundly. We have seen in the discussion
of the hole argument and its solution, that the theory does not distinguish refer-
ence system objects from dynamical objects. This means that independent and
dependent physical observables are not distinguished any more! The reference
system can not be decoupled from the dynamics. Therefore, in the Einsteinian
framework the notion of “dynamical object” has to be extended compared to
the Newtonian case, since now also the reference system objects are included as
dynamical variables. Localization of observables is determined by other variables
of the theory. Therefore:

Position and Motion are fully relational in general relativity!

This important statement is the same as provided in the Cartesian–Aristotelian
picture.

The essential consequence of the fact that localization of dynamical objects
in general relativity is defined only with respect to each other, is the appear-
ance of the diffeomorphism group. Indeed, if we displace all dynamical objects
in the manifold at once, we generate nothing but an equivalent mathematical
description of the same physical state, because localization with respect to the
manifold is irrelevant. Only relative localization is relevant. This is precisely the
claim of active diffeomorphism invariance of the theory. Hence, a physical state
is not located somewhere.

In a quantum theory of gravity, we should not expect quantum exitations
on space–time, as the Newtonian point of view would imply, rather we should
expect quantum excitations of space–time.
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The challenge in the construction of quantum gravity is to find a quantum
field theory in which position and motion are fully relational, i.e. a quantum
field theory without an a priori space–time localization. Here the wheel turns
full circle, and we return to loop quantum gravity, which implements precisely
these requirements.

5 Dynamics, True Observables and Spin Foams

The analysis of the important question of observability in general relativity led
to the insight that spatiotemporal relationalism à la Descartes plays a major
role in the formulation of the theory.

In this section we will return to the quantum theory and firstly focus on
the implementation of relationalism into the framework of canonical quantum
gravity. Secondly, we will investigate the dynamics and the true, i.e. physical
observables of the theory, which formally amounts to the still open problem
of solving the Hamiltonian constraint. Instead, we will construct a projection
operator onto the physical states of loop quantum gravity, which will lead to
a covariant space–time formulation and a relation to the so-called spin foam
models. For a more detailed analysis of this topic we refer to [25].

As we mentioned at the end of the last section, loop quantum gravity is
well-suited to tackle the matters discussed there. Thus, the starting point of our
considerations is the implementation of the concept of non-localizability into the
framework of loop quantum gravity. And of course, as one might have expected,
this is achieved by solving the diffeomorphism constraint!

Recall from sect. 2.5 that the basis in the gauge invariant Hilbert space H0
is given by the spin network states ΨS(A). In the following we adopt Dirac’s
bra-ket notation and denote an abstract basis state ΨS as |S〉, which would be
given in the connection representation by

ΨS(A) = 〈A|S〉 . (71)

5.1 The Diffeomorphism Constraint

We described in sect. 2.3 that the Hilbert space H carries a natural unitary rep-
resentation U(Diff) of the diffeomorphism group Diff(M) of the 3-manifold
M . In the following we will outline the construction of the diffeomorphism in-
variant Hilbert space Hdiff (recall Fig. 2), which can be considered as the space
H/Diff(M) of solutions of the quantum diffeomorphism contraint.

Let’s consider a finite action of a unitary representationU(Diff) ofDiff(M)
on a spin network state |S〉:

U(φ)|S〉 = |φ · S〉 , φ ∈ Diff(M) . (72)

Thus, U sends a state of the spin network basis into another one. To obtain
states which are invariant under U , one has to solve

UΨ = Ψ . (73)
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However, there is no finite norm state invariant under the action of the diffeo-
morphism group. This is not surprising, as the gauge group is not compact, and
leads us to a familiar situation in quantum theory. The way out is to use gener-
alized states techniques. The simplest manner of doing so is to solve (73) in H∗,
the space dual to the space of finite linear combinatons of spin network states.
We construct Hdiff as the Diff(M) invariant part of H∗.

Now, let s be an equivalence class of embedded spin networks S under
Diff(M), i.e. S, S′ ∈ s, if there exists a φ ∈ Diff(M), such that S′ = φ · S.
An equivalence class s or abstract spin network, respectively, is a spin network
which is “smeared” over M . It is usually called s-knot. We define

〈s|S〉 =



0 if S �∈ s

1 if S ∈ s .
(74)

Then the 〈s| span Hdiff , in which the scalar product is defined as

〈s|s′〉 =




0 if s �= s′

c(s) if s = s .
(75)

Here c(s) is the number of discrete symmetries on the abstract s-knot under
a diffeomorphism. Accordingly, the states 1

c(s) |s〉 form an orthonormal basis

(notice that we freely interchange bra’s and ket’s).
The states |s〉 are the diffeomorphism invariant quantum states of the gravi-

tational field. They are described by abstract, non-embedded (knotted, colored)
graphs s. As we have seen above, each link of the graph can be seen as carrying
a quantum of area. As shown for instance in [17], a similar results holds for the
volume: in this case, they are the nodes that carry quanta of volume. Thus, and
abstract graph can be seen as an elementary quantum excitation of space formed
by “chunks” of space (the nodes) with quantized volume, separated by sheets of
surface (corresponding to the links), with quantized area. The key point is that
the graph does not live on a manifold. The quantized space does reside “some-
where”. Instead, it defines the “where” by itself. This is the picture of quantm
spacetime that emerges from loop quantum gravity.

Formal Manipulations. We close the discussion on the diffeomorphism con-
straint by reexpressing the diffeomorphism invariant states using some intriguing
formal expressions that will lead us to dealing with the hamiltonian constraint.

Although we noticed that Hdiff is not a subspace of H, there exists never-
theless a “projection operator” Π ,

Π : H → Hdiff . (76)

It acts as

Π |S〉 = |s〉 , (77)
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i.e. a spin network state is mapped to the corresponding diffeomorphism invariant
equivalence class. In the following, its construction will be given. We start by
formally defining a measure on Diff(M), which is required to satisfy∫

Diff

[dφ] = 1 , (78)

and ∫
Diff

[dφ] δS,φ·S = c(s) . (79)

Loosely speaking, (79) refers to taking an embedded spin network, acting with
diffeomorphisms on it (i.e. displace it smoothly in the manifold), and finally
moving it back to the spin network one started with. Then c(s) just counts the
number of ways one can do this.

Now, a diffeomorphism invariant knot state |s〉 can be written as

|s〉 =
∫
Diff

[dφ] |φ · S〉 , S ∈ s . (80)

Using only the definitions (78)–(80), one immediately concludes (74) and (75).
Furthermore, we can also derive a more explicit expression of the projection
operator Π . Therefore, note that the generator of the diffeomorphism constraint
D[f ], which is a smooth vector field f on M , is an element of the Lie-algebra
of Diff(M). Then, from (72) and (80) one concludes

|s〉 =
∫
Diff

[dφ]U(φ)|S〉 =
∫
[df ] eifD |S〉 , (81)

where in the second step we have expressed U(φ) ∈ U(Diff) as the exponential
of an algebra element, and formally integrate over the algebra rather that the
group. From this and (77) we can immediately read off the projector

Π =

∫
[df ] eifD . (82)

Finally, we also obtain a diffeomorphism invariant quadratic form12 on H,

〈S|S′〉diff ≡ 〈S|Π |S′〉 =
∫
[df ] 〈S|eifD|S′〉 , (83)

where one should notice that the spin networks S and S′ are not diffeomorphism
invariant itselves. Hence it follows (roughly) that the knowledge of the matrix
elements 〈S|Π |S′〉 of the projection operator is equivalent to the solution of the
diffeomorphism constraint!

12 The quadratic form 〈 | 〉diff is highly degenerate, of course.
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5.2 The Hamiltonian Constraint, Spin Foam, and Physical
Observables

In Fig. 2 we illustrated the plan for a step by step construction of the physical
Hilbert space by solving the quantum constraint operators successively. Carrying
this out, we were led from the unconstrained Hilbert space H firstly to the gauge
invariant space H0, equipped with an orthonormal basis of spin network states
|S〉, and secondly, as we described in sect. 5.1, to the diffeomorphism invariant
Hilbert space Hdiff , for which it was also possible to define an orthonormal
basis |s〉 of s-knot states. The final step, marked with a question mark in Fig. 2,
remains to be done: the physical states of the theory should lie in the kernel of
the quantum Hamiltonian constraint operator. Of course, we do not expect to
find a complete solution of the Hamiltonian constraint, which would correspond
to a complete solution of the theory. Rather, we need a well posed definition of
the Hamiltonian constraint, and a strategy to compute with it and to unravel
its physical content.

Here, we will give only a sketchy account of the definition of the Hamiltonian
constraint. On the other hand, we will illustrate the way of using this constraint
a bit more in detail. The idea we will illustrate is to search the solution of the
constraint by constructing a projector on physical states, in the same fashion as
we did in the last paragraph on the diffeomorphism constraint. This construc-
tion will lead us to the so-called spin foam models, which represent a covariant
formulation of the dynamics of quantum gravity, and provide the most exciting
and promising of the recent developements in his subject.

A Simple Example. We have already considered the construction of a projec-
tion operator in relation to the diffeomorphism constraint in sect. 5.1. Neverthe-
less, it is instructive to give here a simple toy example, that should explain the
procedure in a more accurate way.

Consider a simple dynamical quantum mechanical system with an uncon-
strained Hilbert space of square integrable functions over R2 , i.e. H = L2(R2 ).
The system is constrained by demanding invariance with respect to rotations
around the z-axis, i.e the angular momentum operator

Ĵ := Ĵz = i (x ∂y − y ∂x) (84a)

=̂ Ĵϕ = i ∂ϕ (84b)

is the quantum constraint. In (84a) and (84b) we considered two representations,
namely the cartesian and the polar coordinate representation, in which the wave
functions appear as Ψ(x, y) or Ψ(r, ϕ), respectively. We will confine ourselves to
the latter one. The physical Hilbert space Hphys is given as the subspace of H
subject to

ĴΨ = 0 , (85)
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i.e. the physical state functionals are required to lie in the kernel of the quantum
constraint operator Ĵ . We know that Ĵ is the generator of the group U(1) with
parameter α, acting as

U(1)× R2 → R
2 (86a)(

α, (r, ϕ)
)
�→ (r, ϕ+ α) . (86b)

Due to compactness of U(1), the constraint equation (85) could be solved di-
rectly. However, we will follow a different path. We try to solve the problem
using a projection operator

Π : H → Hphys . (87)

Note, that the (finite) action of the constrait on a general state functional Ψ(r, ϕ)
is given by

eiαĴ Ψ(r, ϕ) = Ψ(r, ϕ+ α) . (88)

Hence, the projection operator Π on physical states is defined as

Π =

∫ 2π

0

dα eiαĴ . (89)

It acts on Ψ(r, ϕ) ∈ H as follows,

Π Ψ(r, ϕ) =

∫ 2π

0

dα eiαĴΨ(r, ϕ) (90a)

=

∫ 2π

0

dα Ψ(r, ϕ+ α) = Ψ(r) , (90b)

resulting in a function Ψ(r) which is independent of ϕ, just as one might have
expected for the physical states. However, because of the projector Π , there is
no need to perform calculations in the physical subspace Hphys, rather one can
stay in the unconstrained Hilbert space H – a remarkable simplification! Using
the scalar product

〈Ψ |Φ〉 =
∫ 2π

0

∫ ∞

0

dϕ dr Ψ(r, ϕ)Φ(r, ϕ) , (91)

in H, one arrives at the important result

〈Ψ |Φ〉phys ≡ 〈Ψ |Π |Φ〉 . (92)

This equation is similar to the result obtained in the discussion of the diffeo-
morphism constraint in sect. 5.1. The quadratic form 〈 | 〉phys in Hphys is indeed
expressed as a scalar product over states lying in H. Thus, knowing the matrix
elements (92) of the projection operator in the unconstrained Hilbert space is
equivalent to having solved the constraint!
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It is worth mentioning, that a similar scheme can be applied to operators.
Suppose there exists a non gauge invariant13 operator O = O(r, ϕ) on H. Then a
fully gauge invariant operator R = R(r) in Hphys can be constructed by defining

R := Π OΠ . (93)

The calculation of matrix elements of the physical operator R is then reduced
to a calculation in the unconstrained Hilbert space, obtaining finally

〈Ψ |O|Φ〉phys ≡ 〈Ψ |Π OΠ |Φ〉 . (94)

The Hamiltonian Constraint. Let us now proceed with the application of
the projector method to the Hamiltonian constraint in quantum gravity, the
only constraint which is left for the definition of the dynamical theory. The
following discussion is mainly based on plausibility considerations resulting in
rough arguments. A more complete treatment would include an exponential
growing expenditure of energy, which is beyond the scope of this lecture.

Here, for simplicity, we deal only with the Euclidean part of the Hamiltonian
constraint. In the classical theory, this is

Hcl # FabE
aEb + Lorentzian part . (95)

Ea,b are the triads, and Fab is the curvature of the connection, which, we recall,
is an antisymmetric tensor.

When passing over to the quantum theoryHcl turns into an operator and has
to suitably regularized. A typical regularization process consists of the following
steps. First, we introduce a regularization parameter ε, and we replace the ex-
pression (95) with a regularized, ε dependent one, written in terms of quantities
that we know how to promote to quantum operators, and which tends to Hcl

as ε tends to zero. In the second step, replace the classical quantities with their
quantum analogues, leading to the Hamiltonian operator Ĥε. In the last step,
the parameter is forced to go to zero, ε → 0, yielding a well-defined quantum
Hamiltonian operator Ĥε → Ĥ .

We will not carry out explicitely this construction here. We only mention that
there exist several different versions of it. The first completely consistent con-
struction, yielding a well-defined and finite operator, was obtained by Thiemann
in [12], building on the results and ideas in [13] and [16].

The key point which is common to all different regularization procedures is
the vanishing of the action of the Hamiltonian operator on the holonomy U [A, γ].
That is

Ĥ(x)U [A, γ] = 0 , (96)

if x is on an interior point of the curve γ. The reason for this can roughly be
understood as follows. If we replace the triad in (95) with its quantum analogue
13 For later convenience, we refer to the symmetry in this example as a “gauge” sym-

metry.
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and apply the resulting operator to the holonomy (without bothering about
regularization), we obtain

Fab
δ

δAa

δ

δAb
U [A, γ] ∼ Fab γ̇

aγ̇b = 0 . (97)

While Fab is an antisymmetric tensor, the product of γ̇a and γ̇b, which are
tangent to γ, is symmetric, on the other hand. Thus the result is zero, since we
contract an antisymmetric tensor with a symmetric quantity. This derivation is
formal only, since an infinite coefficient multiplies the right hand side of (97),
but a rigorous regularized calculation yields the same result.

However, if one calculates the action of Ĥ on spin network states, the result
turns out to be not equal to zero,

Ĥ(x)ΨS �= 0 , (98)

due to the end points of the links, namely the nodes. The tangent vectors at a
node in (97) can refer to different links, and thus be distinct. So there are terms
with non-zero contributions. From this considerations, it follows immediately
that the Hamiltonian constraint operator acts on the nodes only.

^
p

pp p
2

1
H

s sn

Fig. 14. The action of the Hamiltonian constraint on a trivalent node.

The action of the operator on a single node is illustrated in Fig. 14. It acts
by creating an extra link which joins two points p1 and p2 lying on distinct
links adjacent to the node p. The color of the link between p and p1, as well as
between p and p2 is altered and the state is multiplied by a coefficient A. The
explicit expressions are computed in [26]. We obtain for the action of Ĥ on a
spin networks state |s〉,

Ĥ [N ] |s〉 =
∑

nodesn of s

AnN(xn) |sn〉 , (99)

where xn refers to the point in which the node n is located, and sn is the spin
network in which the node n is altered as in Fig. 14. Furthermore, the smeared
Hamiltonian constraint Ĥ [N ], with smearing function N(x), is given by

Ĥ [N ] =

∫
d3xN(x) Ĥ(x) . (100)
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Spin Foam. Now we want to define the physical Hilbert space Hphys using
the projector method explained above, starting from the diffeomorphism invari-
ant Hilbert space Hdiff by considering s-knot states. Similar to (82) or (89),
respectively, we construct the projection operator

P =

∫
[dN ] eiĤ[N ] =

∫
[dN ] ei

R
N Ĥ . (101)

In the abstract spin network basis, the matrix elements of P are

〈s|P |s′〉 = 〈s|
∫
[dN ] ei

R
N Ĥ |s′〉 . (102)

It can be shown, that a diffeomorphism invariant notion of integration exists for
this functional integral [25]. According to (83) or (92), respectively, the matrix
elements of P are used to define the quadratic form

〈s|s′〉phys = 〈s|P |s′〉 . (103)

The physical Hilbert space Hphys is then defined over Hdiff , from which we
started, by this quadratic form.

In order to calculate the matrix elements (102) of the projector, we expand
the exponent. We neglect here many technicalities, which can be found in [27].
The expansion has the structure

〈s|P |s′〉 ∼ 〈s|s′〉+
∫
[dN ]

(
〈s|Ĥ |s′〉 + 〈s|ĤĤ |s′〉 + . . .

)
. (104)

Using now the action (99) of Ĥ on spin network states, we obtain

〈s|s′〉phys = 〈s|P |s′〉 ∼ 〈s|s′〉+
∑

nodesn of s′
An 〈s|s′n〉+ . . . , (105)

where we “integrated out” integrals of the type∫
[dN ] (N · · ·N) . (106)

Equation (105) admits an extremely compelling graphical interpretation as a sum
over histories of evolutions of s-knot states. Thus one can regard the projector
as a propagator in accordance with Feynman.

To see this, consider the 4-manifold M = Σ × [0, 1], where we denote the
hypersurfaces of the boundary ofM, corresponding to 0 and 1 in the interval, as
Σi and Σf , respectively. We define the “initial state” on Σi as si := s′, and the
“final state” on Σf as sf := s. Then the term 〈sf |si〉, which is of order zero in the
expansion (105), is non-vanishing only if sf = si, i.e. the corresponding graphs
have to be continuously deformable into each other, such that the colors of the
links and nodes match. Graphically, this is expressed by sweeping out a surface
σ = σi × [0, 1], as shown in Fig. 15. The surface is formed by two-dimensional
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i

f
s

is

f

Σ

Σ

Fig. 15. The diagram corresponding to a term of order zero.

submanifolds of M – so-called faces – which join in edges. The faces are swept
out by spin network links and the edges by the nodes. Thus, every face of σ
is colored just as the underlying link, and to every edge the intertwiner of the
underlying node is associated.

Next, we consider a first order term 〈s|s′n〉 in (105). It appears because of
a single action of the Hamiltonian constraint, i.e. it corresponds to adding (or
removing) one link, or, equivalentely, two nodes into a spin network, cf. Fig. 14.
The situation is similar to the one described for the term of order zero, but now
at some point p of σ the surface branches as shown in Fig. 16. That’s the reason
why the graph of si is not equal any more to the one which is associated to sf .
The surfaces are again colored corresponding to the underlying links.

The picture one should have in mind is the following.M can be imagined as
a spacetime, and si is a spin network that evolves continuously in a coordinate
denoted as “time” up to a point p where the spin network branches because of
the Hamiltonian constraint. This means, that the single node pi degenerates in
the sense of being transformed into two nodes which are connected by a link. The
accompanying branching of the surface in p is called the elementary vertex of
the theory, which is at the same time the simplest geometric vertex, see Fig. 17.

p

s

f
s

i

f

iΣ

Σ

Fig. 16. A first order diagram.
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Fig. 17. The elementary vertex.

Finally, we consider a term of second order and give the coloring of the

surfaces explicitely, see Fig. 18. Let us look at the transition from an (abstract)

spin network si with two trivalent nodes connected by three links with colors

(3, 5, 7) to the s-knot with the same graph but coloring (3, 6, 8). The intermediate

step is an s-knot with four nodes, such that an elementary creation, as well as

an elementary annihilation vertex occur.

Despite of the above simplified considerations, it is plausible that the expan-

sion (105) of 〈s|P |s′〉 can be written as a sum over topologically inequivalent

branched colored surfaces σ, the so-called spin foams [27,28], which are bounded

by si and sf . Each surface σ represents the history of the initial s-knot state,

and is weighted by the product of coefficients Aν , which are associated to the

vertices of σ. Recall that these coefficients appeared in (99) from the action of

the Hamiltonian constraint on s-knot states. They depend only on the coloring
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Fig. 18. A term of second order.
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of the faces and edges adjacent to the relevant vertices. In the end, we obtain

〈s|s′〉phys = 〈s|P |s′〉 =
∑
spin

foamsσ

∏
vertices
ν∈σ

Aν (107)

for the transition amplitude between the two (abstract) spin network states si
and sf . We call it a transition amplitude because of the obvious formal analogy
to the expressions in standard quantum field theory, which gives rise to the
interpretation of Fig. 15, 16 and 18 roughly as “Feynman diagrams” of quantum
gravity.

This interpretation is reinforced by a number of independent results. For
instance, certain discretized covariant approaches to quantum gravity lead pre-
cisely to a “sum over discretized 4-geometries”, very similar to (107). See for
instance ([29]). Inspired by the construction above, J. Baez has defined a gen-
eral notion of spin foam model and studied the structure of these models in
general. See [28] and references therein.

Physical Observables. To round off this section, we briefly comment on an
application of the projector method to the calculation of physical observables. As
before, we will not consider problems that arise with the normalization process or
ill-defined expressions that might occur, but rather concentrate on the conceptual
framework. A more detailed account can be found in [25].

In the spirit of this section, we try to construct a physical observable, i.e.
a self-adjoint operator which is invariant under the full symmetry group of the
theory, by starting from a 3-diffeomorphism invariant operator O which acts on
Hdiff . We have seen in (93) that the fully gauge invariant observable is then
given by

R = P O P , (108)

where the projector P onto the physical Hilbert space is defined in (101). Indeed,
R is invariant under four-dimensional diffeomorphisms. Thus, the expectation
value in a physical state is given by

〈s|O|s〉phys := 〈s|P O P |s〉 . (109)

Performing now a similar treatment of the matrix elements (109) as above, we
obtain the expression for the expectation values in the spin foam version as

〈s|O|s〉phys ∼
∑
spin

foamsσ

(∑
s̃

O(s̃)

) ∏
vertices
ν∈σ

Aν . (110)

For simplicity, we have chosen O to be diagonal. Furthermore, s̃ are all possible
spin networks that cut a spin foam σ (i.e. a branched colored two-surface) in two
parts, a future and a past one. These s̃ may be considered as spacelike slices,
which cut a given spin foam.
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On closer examination of (110) one recognizes that the first summation has
to be performed over all possible spin foams σ, and on top of that, for each
of these spin foams, all of its spacelike slices have to be summed up. Without
going into details, we briefly mention that this has the appealing geometrical
interpretation of an “integration over space–time”, or a bit more precisely, of an
“integration” over the location of the ADM surfaces in (the quantum version of
the classical) four-dimensional space–time. Thus, expectation values of physical
observables are given as averages over the spin foam in an intuitively similar
manner as one is used to from standard quantum field theory. Moreover, this
method provides a framework for the non-perturbative, space–time covariant
formulation of a diffeomorphism invariant quantum field theory.

However, so far we didn’t mention any problems that arise. Recall first, that
we considered only the Lorentzian part of the Hamiltonian constraint. Further-
more, it is unclear what shape physical observablesO, which are at least required
to yield finite results, should take. Intuitively, we might expect that observables
of the form

O = Õ × δ(something) , (111)

might be finite, and might correspond to the realistic relational observables dis-
cussed above. But so far the topic of this final subsection is still very little
explored territory and our considerations may at best give some rough ideas of
what remains to be done.

6 Open Problems and Future Perspectives

This series of lectures was devoted to loop quantum gravity, a non-perturbative
canonical formulation for a quantum theory of gravitation. We introduced the
basic principles of the theory in the kinematical regime, including spin network
states which provide an orthonormal basis in the gauge invariant Hilbert space.
As an application, one of the most exiting results obtained in the last few years,
the discreteness of geometry, was examined by considering the quantization of
the area. Furthermore, by taking the basic principles of general relativity seri-
ously, we have shown by discussing the topics of diffeomorphism invariance and
observability in general relativity, that loop quantum gravity is well-adapted for
a quantum theory of gravitation.

Finally, in order to examine also the non-perturbative dynamics of quantum
gravity a little, an ansatz for the construction of the physical Hilbert space by
means of a projection method was explained. We tried to clarify its interpretation
in terms of a spin foam model, in which the projection operator itself plays the
role of a propagator for the space–time evolution of (abstract) spin networks.
Its Feynman diagram like graphic representation was presented as well. We also
gave the prospects for a possible calculation of expectation values of operators
representing physical observables, by using the spin foam formalism.

There are several open questions which remain to be explored. We mentioned
that, because of different regularization schemes, there exist several versions of
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the Hamiltonian constraint. Thus, one of the most intriguing questions would
certainly be to find the “right” consistent Hamiltonian constraint, i.e. the one
which has the correct classical limit. Closely related is the question of how such
a classical limit should be studied at all. What are the coherent states? What is
the ground state of the theory? Does a notion of “ground state” make sense at
all, in a general covariant theory?

The problem of constructing four-dimensional diffeomorphism invariant ob-
servables is crucial. We do knowmany four-dimensional diffeomorphism invariant
observables in general relativity: in fact, we use them in the classical applications
of general relativity, which are nowdays extremely numerous. But to express such
observables in the quantum theory is still technically hard. In particular, in or-
der to compare loop quantum gravity with particle physics approaches, and to
make contact with traditional quantum field theory, it would be extremely useful
to be able to compute scattering amplitudes in an asymptotically flat context.
Some kind of perturbation expansion should be used for such a project. But
in this context the notion of “expansion”, and “perturbative” are delicate (ex-
pand around what?). For these problems, the spin foam formalism may turn out
to be essential, since it provides a space–time formulation of a diffeomorphism
invariant theory.

We close these letures by expressing the wish that some of the students that
so enthusistically attended them will be the ones able to solve these problems,
to give us a fully convincing quantum theory of spacetime, and thus push for-
ward this extraordinary beautiful adventure, which is exploring Nature and its
marvellous and disconcerting secrets.
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Abstract. This is a set of introductory lecture notes on black holes in string theory.
After reviewing some aspects of string theory such as dualities, brane solutions, su-
persymmetric and non-extremal intersection rules, we analyze in detail extremal and
non-extremal 5d black holes. We first present the D-brane counting for extremal black
holes. Then we show that 4d and 5d non-extremal black holes can be mapped to the
BTZ black hole (times a compact manifold) by means of dualities. The validity of these
dualities is analyzed in detail. We present an analysis of the same system in the spirit
of the adS/CFT correspondence. In the “near-horizon” limit (which is actually a near
inner-horizon limit for non-extremal black holes) the black hole reduces again to the
BTZ black hole. A state counting is presented in terms of the BTZ black hole.

1 Introduction

The physics of 20th century is founded on two pillars: quantum theory and
general theory of relativity. Quantum theory has been extremely successful in
describing the physics at microscopic scales while general relativity has been
equally successful with physics at cosmological scales. However, attempts to
construct a quantum theory of gravity stumble upon the problem of the non-
renormalizability of the theory. Is it really necessary to have a quantum theory
of gravity? Why not having gravity classical and matter quantized? Is it just an
aesthetic question or is there an internal inconsistency if some of the physical
laws are classical and some quantum? If some of the interactions are classical then
one could use only these interactions in order to arbitrarily obtain the position
and the velocity of particles, thus violating Heiseberg’s uncertainty principle.
Therefore, at the fundamental level, if some of the physical laws are quantum,
all of them have to be quantum.

It is amusing to see what happens if we insist on both classical general rel-
ativity and the uncertainty principle. Suppose we want to measure a spacetime
coordinate with accuracy δx, then by the uncertainty principle there will be
energy of order 1/δx localized in this region. But if δx is very small then the
energy will be so large that a black hole will be formed, and the spacetime point
will be hidden behind a horizon! One can estimate[1] that the scale that leads
to a black hole formation (through the uncertainty principle) is of order of the
Planck length lp. Therefore, classical general relativity and quantum mechanics
become incompatible at scales of order lp.

One of the most fascinating objects that general relativity predicts is black
holes. Classically, black holes are completely black. Objects inside their event
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 Springer-Verlag Berlin Heidelberg 2000
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horizon are eternally trapped. Even light rays are confined by the gravita-
tional force. In addition, there is a singularity hidden behind the horizon. In
the early seventies, a number of laws that govern the physics of black holes were
established[2–4]. In particular, it was found that there is a very close analogy
between these laws and the four laws of thermodynamics[3]. The black hole laws
become that of thermodynamics if one replaces the surface gravity κ of the black
hole by the temperature T of a body in thermal equilibrium, the area of the black
hole A by the entropy S[4], the mass of the black hole M by the energy of the
system E etc. It is natural to wonder whether this formal similarity is more than
just an analogy. At the classical level one immediately runs into a problem if one
tries to take this analogy seriously: classically black holes only absorb so their
temperature is strictly zero. In a seminal paper[5], however, Hawking showed
that quantum mechanically black holes emit particles with thermal spectrum.
The temperature was found to be T = κ/2π! Then from the first law follows the
“Bekenstein-Hawking entropy formula”,

S =
A

4GN
(1)

where GN is Newton’s constant. Having established that black hole laws are
thermodynamic in nature one would like to understand what is the underlying
microscopic theory. What are the microscopic degrees of freedom that make up
the black hole?

Since black holes radiate, they lose mass and they may eventually evaporate.
Observing such a phenomenon is rather unlikely since one can estimate the
lifetime of a black hole of stellar mass to have lifetime1 longer than the age
of the universe. The fact, however, that black holes Hawking radiate and may
eventually evaporate leads to an important paradox. The matter that falls into
black holes has structure. The outgoing radiation, however, is structure-less since
it is thermal. What happens to the information stored in the black hole if the
black hole completely evaporates? If it gets lost then the evolution is not unitary.
Hawking argued that these considerations imply that quantum mechanics has
to be modified. There is great controversy over the question of the final state of
black holes, and there is no completely satisfactory scenario. We will not enter
into this question in these lectures. Let us note, however, that the resolution of
this problem may be related to the question of understanding the microscopic
description of black holes. Radiation from stars also has a thermal spectrum.
However, we do not claim that information is lost in stars. The thermal spectrum
is due to averaging over microscopic states.

We have seen that semi-classical considerations yield a number of important
issues. Any consistent quantum theory of gravity should provide answers to
the questions raised in the previous paragraphs. The leading candidate for a
quantum theory of gravity is string theory. Therefore, string theory ought to
resolve these issues. Issues involving black holes are non-perturbative in nature.

1 For black holes of massM the Hawking temperature is of order T ∼ 10−6(M�/M) K
and their lifetime of order 1071(M�/M)−3 s.
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Up until recently, however, we only had a perturbative formulation of string
theory. The situation changed dramatically over the last few years. Dualities
have led to a unified picture of all string theories [6, 7]. Moreover, new non-
perturbative objects, the D-branes, were discovered[8]. These new ingredients
made possible to tackle some of the problems mentioned above.

In these lectures we review recent progress in understanding black holes using
string theory. Previous reviews for black holes in string theory include [9–11].
We start by briefly reviewing perturbative strings, D-branes and dualities in sec-
tion 2. In particular, we review in some detail T-duality in backgrounds with
isometries. In section 3 we present the brane solutions of type II and eleven
dimensional supergravity, their connections through dualities, and a set of inter-
section rules that yields new solutions describing configurations of intersecting
branes. We use these results in section 4 in order to study extremal and non-
extremal black holes. In section 4.1 we analyze extremal 5d black holes. We
show that one can derive the Bekenstein-Hawking entropy formula by counting
D-brane states. In section 4.2 we show that 4d and 5d non-extremal black holes
can be mapped to the BTZ black hole[27, 13] (times a compact manifold) by
means of dualities. We show that a general U-duality transformation preserves
the thermodynamic characteristics of black holes. Then we critically examine
the so-called shift transformation that removes the constant part from harmonic
functions. We show that this transformation also preserves the thermodynamic
characteristics of the original black hole. In general, however, it is not a symme-
try of the theory. Section 4.3 contains a short introduction to adS/CFT duality,
and its application to black holes. The low-energy decoupling limit employed
in the adS/CFT correspondence (which is a near inner-horizon limit for non-
extremal black holes) also yields a connection with the BTZ black hole. We use
the connection to the BTZ black hole to infer a state counting for the higher
dimensional black holes.

A “road map” for our discussion is provided by figure 1. Our aim is to un-
derstand 4d or 5d black holes using string theory (top right part of figure 1).
As a first step one constructs solutions of the low energy effective action of the
appropriate string theory that upon compactification in 4 or 5 dimensions yield
the desired black hole solution (middle left part of figure 1). In these lectures we
will restrict ourselves to toroidal compactifications of type II string theory. The
appropriate supergravity solutions can be constructed by intersecting elementary
black p-brane solutions. This yields a connection with D-branes (bottom right
part of figure 1). A D-brane, which in string weak coupling is a hyperplane where
strings can end, has a description as a solitonic object of the low energy super-
gravity. The black hole solution is obtained by fully wrapping the intersecting
branes over the compactification manifold (tori in our case). At weak coupling
one can use D-brane techniques in order to study the configuration of intersect-
ing branes. In particular, for supersymmetric black holes certain quantities can
be calculated in weak coupling and the result can be reliably extrapolated to
strong coupling. Such quantity is the number of states that make up the black
hole configuration. For non-extremal black holes such an extrapolation is not
justified and a new approach is needed. Such an approach is illustrated in the
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left part of figure 1. Either by the shift transformation or in the “near-horizon”
limit, the toroidal compactifications are turned into spherical ones (middle left
part of figure 1). Upon dimensional reduction over the compact part one obtains
the three dimensional BTZ black hole (top left part of figure 1)! Therefore, at
least part of the physics of the 4d and 5d black holes is captured by the BTZ
black hole. In these lectures we start from the bottom part of figure 1 and work
our way to the top.

D-brane description

transformation

"near-horizon"
limit

shift

strong-weak
coupling limit

dimensional reductiondimensional reduction

10d (or 11d) supergravity solution

  4d or 5d black hole

 

      involving tori

10d (or 11d) supergravity solution

involving spheres

BTZ black hole

Fig. 1. “Road map”: In this picture we indicate the various routes that lead to con-
nections between 4d and 5d black holes and higher dimensional supergravity solutions,
D-branes as well as the 3d BTZ black hole.
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2 String theory and dualities

In this section we present some aspects of string theory. The main purpose is to
set our conventions and to review certain material that will be of use in later
sections.

2.1 Bosonic string and D-branes

The worldsheet action for the bosonic string is given by

S =
1

4πα′

∫
dτ

∫ π

0

dσ
√
hhab∂aX

µ∂bXµ. (2)

where h is the worldsheet metric. The tension of the string is given by T =
1/(2πα′) (α′ is the square of the string length ls). Varying the action we obtain

δS = − 1

2πα′

∫
dτdσ

√
hδXµ Xµ +

1

2πα′

∫
dτ [
√
h∂σXµδX

µ]σ=π
σ=0 (3)

In order to have a well-defined variational problem the last term should vanish.
This implies three different types of boundary conditions

Xµ(τ, σ) = Xµ(τ, σ + π) closed string

∂σX
µ(σ = 0) = ∂σX

µ(σ = π) = 0 open string with Neumann BC

Xµ(σ = 0) = const, Xµ(σ = π) = const, open string with Dirichlet BC

The Neumann boundary conditions for the open string imply that there is no
momentum flow at the end of the string. With Dirichlet boundary conditions,
however, there is momentum flowing from the string to the hypersurface where
the string ends (dPµ = T∂σX

µdτ �= 0, at σ = 0 and σ = π). Therefore, this
hypersurface, the D-brane, is a dynamical object.

One may (first) quantize the string using standard methods. The closed string
consists of left and right movers. We denote the left and right level by N and Ñ ,
respectively. For open strings we have only one kind of oscillators. The pertur-
bative spectrum for the three kind of boundary conditions listed above is given
by

M2
closed =

2

α′
(N + Ñ − 2)

M2
open,N =

1

α′
(N − 1)

M2
open,D =

(
l

2πα′

)2

+
1

α′
(N − 1) (4)

The term l/2πα′=lT is the energy of a string of length l stretched between two
D-branes.
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From (4) follows that the massless spectrum of closed strings consist of a
graviton Gµν , an antisymmetric tensor Bµν and a dilaton φ. The massless spec-
trum of open strings with Neumann boundary conditions consists of a photon
Aµ. Finally, for a string that ends on a Dp-brane, i.e. the open string endpoints
are confined to the p + 1-dimensional worldvolume of the D-brane, we get a
vector field Am, m = 0, . . . , p, that lives on the worldvolume of the D-brane,
and (25 − p) scalars. The latter encode the fluctuations of the position of the
D-brane.

The string coupling constant is not a new parameter but the expectation
value of the dilaton field, 〈eφ〉 = gs. String theory perturbation theory is weighted
by gχs , where χ is the Euler number of the string worldsheet. A compact surface
can be built by adding g handles, c cross-caps and b boundaries to the sphere.
Its Euler number is given by χ = 2−2g−b−c. Hence, the closed string coupling
constant is proportional to the square of the open string coupling constant.

One may calculate the tension of D-branes[8, 14]

Tp ∼
1

gsl
p+1
s

. (5)

Since the tension of the D-brane depends on the inverse of the string coupling
constant, D-branes are non-perturbative objects. Notice that this behavior is
different from the behavior of field theory solitons whose mass goes as 1/g2, where
g is the field theory coupling constant. The existence of such non-perturbative
objects is required by string duality [7].

2.2 Superstrings

There are five consistent string theories; type IIA and IIB, type I, heterotic
SO(32) and heterotic E8 × E8. All of them are related through dualities. In
this review we shall concentrate on type II theories, so we briefly present some
aspects of them.

The bosonic massless sector of type II theories consist of the following fields

Type IIA gµν Bµν φ C
(1)
µ C

(3)
µνλ

Type IIB gµν Bµν φ C(0) C
(2)
µν C

(4) +
κλµν ,

where C(p) are p-index antisymmetric gauge fields. The + in C(4)+ indicates that
the field strength is self-dual. The graviton gµν , the antisymmetric tensor Bµν

and the dilaton φ make up the NSNS sector. These fields couple to perturbative
strings. The RR sector (i.e. the antisymmetric tensors C(p+1)), however, does
not couple to perturbative strings but rather to Dp-branes.

Extended objects naturally couple to antisymmetric tensors. The prototype
example is the coupling of the point particle to electromagnetic field,

∫
Aµdx

µ.
Similarly, fundamental strings naturally couple to Bµν , and Dp-branes to C(p+1)

∫
Σ

Bµνdx
µ ∧ dxν∫

Mp+1

C
(p+1)
µ1···µp+1dx

µ1 ∧ · · · ∧ dxµp+1 (6)
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where Σ andMp+1 is the string worldsheet and Dp-brane worldvolume, respec-
tively. To each “electric” p-brane there is also a dual “magnetic” (6− p)-brane.
(To see this notice that ∗dC(p+1) = dC̃(7−p)). In particular, there is a solitonic
5-brane (NS5) that is the magnetic dual of a fundamental string F1. In addition,
strings can carry momentum. This corresponds in low energy to gravitational
waves (W). The (Hodge) dual to waves are Kaluza-Klein monopoles (KK) (see
section 3).

In summary, we have the following objects in type II theory (D(-1) are D-
instanton and D9 are spacetime-filling branes)

Type IIA W F1 NS5 KK D0 D2 D4 D6 D8
Type IIB W F1 NS5 KK D(-1) D1 D3 D5 D7 D9

We have deduced the existence of dynamical extended objects by consider-
ing perturbative string theory. These states, however, preserve half of maximal
supersymmetry and therefore continue to exit at all values of the string coupling
constant.

2.3 Dualities

A central element in the recent developments are the duality symmetries of
string theory. The duality symmetries are believed to be exact discrete gauge
symmetries spontaneously broken by scalar vev’s.

The best-understood duality symmetry is T-duality. This symmetry is visi-
ble in string perturbation theory but it is non-perturbative on the worldsheet.
T-duality relates compactifications on a manifold of (large) volume v to com-
pactifications on a manifold of (small) volume 1/v. The simplest case is com-
pactification on a circle. Upon such compactification the two type II theories,
and heterotic E8 ×E8 and heterotic SO(32) theories are equivalent,

[IIA]R
T←→ [IIB]1/R

[Het E8 ×E8]R
T←→ [Het SO(32)]1/R,

where the subscript indicates that the theory is compactified on a circle of radius
R (1/R).

The action of T-duality on the various objects present in II theories is given
in Table 1. The T-duality may be performed along one of the worldvolume
directions or along a transverse direction (for the KK monopole the transverse
direction is taken to be the nut direction (see section 3)). More generally, T-
duality asserts that different spacetimes with isometries may be equivalent in
string theory. We shall present the argument in some detail in the next section
since we will make use of these results.

A (conjectured) non-perturbative symmetry is S-duality. This is non - per-
turbative because it acts on the dilaton as gs → 1/gs. Thus, S-duality relates the
strong coupling regime of one theory to the weak coupling regime of another. In
particular we have

IIB
S←→ IIB

Het SO(32)
S←→ Type I (7)
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Parallel transverse

Dp D(p− 1) D(p+ 1)

F1 W F1

W F1 W

NS5 NS5 KK

KK KK NS5

Table 1. T-duality along parallel and transverse directions

Actually, IIB string theory is believed to have an exact non-perturbative SL(2, Z)
symmetry. In the following we shall only make use of the Z2 subgroup that sends

τ = C(0)+ ie−φ to −1/τ , interchanges Bµν with C
(2)
µν , and leaves invariant C(4)+

(so, in terms of branes, S-duality interchanges F1 with D1, NS5 with D5, and
leaves invariant the D3 brane).

S-duality allows one to get a handle to the strong coupling limit of three
of the five string theories. In turns out that the strong coupling limit of IIA
and heterotic E8 × E8 theories is of a more “exotic” nature. One gets instead
an 11 dimensional theory, the M-theory[7, 15]. M-theory on a small circle of
radius R11 = gsls yields IIA theory with string coupling constant gs[7]. Since
perturbative string theory is an expansion around gs = 0, the eleventh dimension
is not visible perturbatively. Likewise, M-theory on an interval gives E8 × E8

string theory[16]. Actually, all string theories can be obtained in suitable limits
from eleven dimensions.

Although we do not have a fundamental understanding of what M-theory
is, we know that in low-energies M-theory reduces to 11 dimensional supergrav-
ity[17]. Eleven-dimensional supergravity compactified on a torus yields a lower
dimensional Poincaré supergravity with a certain duality group. The discretized
version of this duality group is conjectured[6] (and widely believed) to be an ex-
act symmetry of M-theory. T and S duality combine to yield this bigger group,
the U-duality group.

Buscher’s duality Consider the sigma model

S =
1

4πα′

∫
d2σ

√
h[(habgµν + i

εab√
h
Bµν)∂aX

µ∂bX
ν + α′R(2)φ] , (8)

where h and R(2) is the worldsheet metric and curvature, g is the target space
metric and B is a potential for the torsion 3-form H = dB. This action is
invariant under the transformation

δXµ = εkµ (9)

when the vector field kµ is a Killing vector, the Lie derivative of B is a total
derivative and the dilaton is invariant,

Lkgij = ki;j + kj;i = 0,

LkB = ιkdB + dιkB = d(v + ιkB)

Lkφ = kµ∂µφ = 0 (10)
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One can now choose adapted coordinates {Xµ} = {x, xi} such that the isometry
acts by translation of x, and all fields g, B and φ are independent of x. In adapted
coordinates, the killing vector is equal to kµ∂/∂Xµ = ∂/∂x.

To obtain the dual theory we first gauge the symmetry and add a Lagrange
multiplier χ that imposes that the gauge connection is flat [18]. The result (in
the conformal gauge and omitting the dilaton term) is (see [19], [20] for details)

S1 =
1

2πα′

∫
d2z[(gµν +Bµν)∂X

µ∂̄Xν + (Jk − ∂χ)Ā+ (J̄k + ∂̄χ)A+ k2AĀ]

(11)

where Jk = (k+ v)µ∂X
µ, J̄k = (k− v)µ∂̄Xµ are the components of the Noether

current associated with the symmetry. If one integrates out the Lagrange multi-
plier field χ, on a topologically trivial worldsheet the gauge fields are pure gauge,
A = ∂θ, Ā = ∂̄θ, and one recovers the original model (8).

If one integrates out the gauge fields A, Ā one finds the dual model. One
obtains (8) but with dual background fields g̃, B̃, Φ̃. In adapted coordinates
{Xµ} = {x, xi},

g̃xx =
1

gxx
g̃xi =

Bxi

gxx
g̃ij = gij −

gxigxj −BxiBxj

gxx

B̃xi =
gxi
gxx

B̃ij = Bij +
gxiBxj −Bxigxj

gxx

φ̃ = φ− 1

2
ln gxx (12)

The dilaton shift is a quantum mechanical effect [21] (see [22] for recent careful
discussion).

Another useful way to write these transformation rules is to re-write the
metric as

ds2 = gxx(dx+Aidx
i)2 + ḡijdx

idxj (13)

where Ai = gxi/gxx. Then the duality transformations take the form[23]

g̃xx =
1

gxx
, Ãi = Bxi, B̃xi = Ai, B̃ij = Bij − 2A[iBj]x

φ̃ = φ− 1

2
ln gxx ḡij invariant (14)

This form of the transformation rules exhibits most clearly the spacetime inter-
pretation of the duality transformations. The form of the metric in (13) is the
standard KK ansatz for reduction over x. Dimensional reduction over x leads
to a (d−1)-dimensional theory which is invariant under the transformations in
(14). These transformations act only on the matter fields and not on the pure
gravitational sector.

Let us now discuss under which conditions the dual models are truly equiv-
alent as conformal field theories.
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• Compact vs non-compact isometries
In our discussion above we assumed that the worldsheet is trivial. Let us re-
lax this condition. Suppose also that we deal with a compact isometry. The
constraint on A, Ā that comes from integrating out the Lagrange multiplier χ
implies A, Ā are flat, but in principle they still may have nontrivial holonomies
around non-contractible loops. These holonomies can be constrained to vanish if
χ has appropriate period[19, 20]. In summary, dualizing along a compact isome-
try one obtains a dual geometry which also has a compact isometry. The periods
of the original and dual coordinate are reciprocal to each other. If this condition
does not hold, the two models are not fully equivalent but related via an orbifold
construction.

Non-compact isometries can be considered as a limiting case. Since in this
case x takes any real value, the dual coordinate χ must have period zero. The
dual manifold is an orbifold obtained by modding out the translations in χ.
• Isometries with fixed points

In our analysis we also assumed that the isometry is spacelike. If the isometry
is timelike then it follows from (11) that the integration over the gauge field
yields a divergent factor. If the isometry is null then the quadratic in the gauge
field term in (11) vanishes. Therefore these cases require special attention. We
refer to [24–26] for work concerning dualization (or the closely related issue of
dimensional reduction) along timelike or null isometries.

A spacelike isometry may act freely or have fixed points. A typical example
of an isometry without fixed points are the translational symmetries on tori.
On the other hand, rotational isometries have fixed points. At the fixed point
k2 = 0. It follows from (12) (using k2 = gxx) that the dual geometry appears to
have a singularity at the fixed point.

Taking the curvature of the spacetime to be small in string units (which is
required for consistency for strings propagating in a background that only solves
the lowest order beta functions) we see that we may approximate the vicinity
of the fixed point by flat space. In adapted coordinates, which are just polar
coordinates, the isometry direction being the angular coordinate, we have

ds2 = dr2 + r2dθ2. (15)

Dualizing along θ we obtain

ds2 = dr2 +
1

r2
dθ2, φ = −1

2
ln r2. (16)

So indeed the fixed point of the isometry, i.e. r = 0, becomes a singular point after
the duality transformation. Since the curvature now diverges at r = 0 we cannot
trust the (first order in α′) sigma model analysis. A more careful conformal field
theory analysis[27] shows that the duality yields an exact equivalence but the
operator mapping includes all orders in α′. We can read this result as follows: All
order α′ corrections resolve the singularity present in the spacetime described
by (16) yielding an exact non-singular conformal field theory.

Studies of T-duality along a rotational isometry can be found in [28–30].
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3 Brane solutions

String theory has a mass gap of order 1/ls. At low enough energies only the
massless fields are relevant. We can decouple the massive modes by sending α′ →
0 (so the mass of the massive modes goes to infinity). The interactions of the
massless fields are described by an effective action. For IIA and IIB superstring
theories the low energy theory is IIA and IIB supergravity, respectively. We
have seen that in type II string theories there exist dynamical objects other
than strings, namely D-branes, and solitonic branes. For each of these objects
there is a corresponding solution of the low energy supergravity. The purpose of
this section is to describe these solutions. For reviews see [31–33].

The relevant part of the supergravity action, in the string frame, is 2

S =
1

128π7g2sα
′4

∫
d10x

√
−g

[
e−2φ

(
R+ 4(∂φ)2 − 1

12
|H3|2

)
− 1

2(p+ 2)!
|Fp+2|2

]
(17)

We use the convention to keep the asymptotic value of φ in Newton’s constant

(G
(10)
N = 8π6g2sα

′4), so the asymptotic value of eφ below is equal to 1.3

The equations of motion of the above action have solutions that have the
interpretation of describing the long range field of fundamental strings (F1),
Dp-branes and solitonic fivebranes (NS5). These solutions are given by[34]

ds2st = H
α
i [H

−1
i ds

2(E
(p,1)

) + ds2(E
(9−p)

)]

eφ = Hβ
i

A
(p+1)
01···p = H−1

i − 1, “electric”, or F8−p = 9dHi, “magnetic” (18)

whereA(p+1) is either the RR potential C(p+1), or the NSNS 2-formB, depending

on the solution. 9 is the Hodge dual of E
(9−p)

. The subscript i = {p, F1, NS5}
denotes which solution (Dp-brane, fundamental string or solitonic fivebrane, re-
spectively) we are describing. In order for (18) to be a solution Hi must be a

harmonic function on E
(9−p)

,

∇2Hi = 0 (19)

Let r be the distance from the origin of E
(9−p)

. The choice

Hi = 1 +
Qi

r(7−p)
, p < 7 (20)

yields the long-range fields of N infinite parallel planar p-branes near the ori-
gin. The constant part was chosen equal to one in order for the solution to be
asymptotically flat. The values of the parameters α and β for each solution are
given in Table 2. In the same table we also give the values of the charges Qi.
The constant dp is equal to dp = (2

√
π)5−pΓ (7−p

2 ).
2 There are several other bosonic terms in the action. These terms are not relevant for
the solutions (18) since in these solutions there is only a single antisymmetric tensor
turned on. We have also omitted all fermionic terms.

3 The field equations are invariant under eφ → ceφ, C(p+1) → c−1C(p+1), where c is a
constant, so one can change conventions by an appropriate choice of c.
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Dp-branes α = 1/2 β = (3− p)/4 Qp = dpNgsl
7−p
s

F1 α = 0 β = −1/2 QF1 = d1Ng2
s l

6
s

NS5 α = 1 β = 1/2 QNS5 = Nl2s

Table 2. p-brane solutions of Type II theories.

Apart from these solutions, there are also purely gravitational ones. There is
a solution describing the long range field produced by momentum modes carried
by a string. This is the gravitational wave solution,

ds2 = −K−1dt2 +K(dx1 − (K−1 − 1)dt)2 + dx2
2 + · · ·+ dx2

9 (21)

where K = 1 +QK/r
6 is again a harmonic function and QK = d1g

2
sNα

′/R2. R
is the radius of x1.

Finally, there is a solution describing a Kaluza-Klein (KK) monopole (the
name originates from the fact that upon dimensional reduction over ψ the KK
gauge field that one gets is the monopole connection):

ds2 = ds2(E
(6,1)

) + ds2TN

ds2TN = H−1(dψ +QM cos θdϕ)2 +Hdxidxi, i = 1, 2, 3

H = 1 +
QM

r
, r2 = x2

1 + x
2
2 + x

2
3 (22)

where TN stands for Taub-NUT, θ and ψ are the angular coordinates of x1, x2, x3,
QM = NR/2, N is the number of coincident monopoles and R is the radius of
ψ.

S-duality leaves invariant the action in the Einstein frame. To reach the
Einstein frame we need to do the Weyl rescaling gE = e−φ/2gst. Using the fact
that under S-duality φ → −φ (and gs → 1/gs) we get gµν → e−φgµν . The
compactification radii are measured using the string metric. So, they change
under S-duality. One can take care of this by changing the string scale, α′ → α′gs.
We therefore get the following S-duality transformation rules

φ→ −φ (gs → 1/gs), α′ → α′gs
gµν → e−φgµν , Bµν ↔ C(2)

µν (23)

With these conventions Newton’s constant, G
(10)
N = 8π6g2sα

′4, is invariant under
S-duality.

T-duality acts as in (12) in the NSNS sector. In particular, dualization along
a coordinate of radius R yields

R→ α′

R
, gs → gs

ls
R

(24)

For the RR fields we get[35]

Cµ1···µp+1 → Cµ1···µp+1x, x �∈ {xµ1 , · · · , xµp+1}
Cxµ1···µp+1 → Cµ1···µp+1 (25)
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depending on whether we dualize along a coordinate transverse or parallel to
the brane.

It is easy to see that the values of the chargesQi are consistent with dualities.
For instance, under S-duality: QNS5 = Nα′ ↔ Ngsα

′ = Q5. Actually, dualities
determine both the value of Newton’s constant and the charges (including the
numerical coefficients) [10]: The massM of an object can be calculated from the
deviation of the Einstein metric from the flat metric at infinity. In particular[36],

gE,00 =
16πG

(d)
N M

(d− 2)ωd−2

1

rd−3
(26)

where ωd = 2π(d+1)/2

Γ ( d+1
2 )

is the volume of the unit sphere Sd. Completely wrapping

a given brane on torus and dimensionally reducing we get a spacetime metric in
d = 10− p dimensions,

ds2E,d = −H−d−3
d−2 dt2 +H

1
d−2 ds2(E

(d−1)
) (27)

This result is obtained by using the dimensional reduction rules[37]

ds2E,d = e−
4

d−2φdds2st, e−2φd = e−2φ
√
detgint (28)

where gint is the component of the metric in the directions we dimensionally
reduce. If H = 1 + c(d)/rd−3 then,

c(d) =
16πG

(d)
N M

(d− 3)ωd−2
. (29)

The mass M appearing in this formula is the same as the mass measured in the
string frame since we used the convention to leave a factor of g2s in Newton’s
constant. These masses can be easily obtained by U-duality. Knowledge of one
of the coefficients in (29) is sufficient to determine GN and therefore all other
coefficients as well. In [10] the value of cNS5 was determined from the Dirac
quantization condition. Perhaps the simplest way to proceed is to observe that
the coefficient in the harmonic function of the KK monopole is fixed by requiring
that the solution is non-singular.

All these solutions are BPS solution and preserve half of maximal supersym-
metry. This implies that certain quantities do not renormalize. Let us sketch the
argument. The supersymmetry algebra has the form

{Qα, Qβ} ∼ (CΓµ)αβPµ + (CΓµ1···µp)αβZ
(p)
µ1···µp (30)

where C is the charge conjugation matrix, Qα are the supercharges, Pµ is the
momentum generator, and Z(p) are central charges. These are the charges carried
by p branes.

Taking the expectation value of (30) between a physical state |A〉 and going
to the rest frame we get

〈A|{Qα, Qβ}|A〉 = (MA − c|Z|)αβ ≥ 0 (31)
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where MA
αβ is the mass matrix, c is a constant, and we used the fact that

{Qα, Qβ} is a positive definite matrix.

If the matrix in the right hand side has no zero eigenvalues, then one can
take suitable linear combinations of the supercharges so that the superalgebra
takes the form of fermionic oscillator algebra. Then half of the oscillators can
be regarded as creation and half as annihilation operators. This means that a
supermultiplet contains 216 states.

If the matrix in the right hand side of (31) has a zero eigenvalue (so the mass
is proportional to the charge, M = c|Z|, i.e. we have a BPS state) then some
of the generators annihilate the state. The remaining supercharges can again
be divided into half creation and half annihilation operators. Thus, the BPS
supermultiplet is a short multiplet. For 1/2 supersymmetric states, such as the
branes we have been discussing, this means that we have 28 states instead of
216.

If we vary adiabatically the parameters of theory (i.e. no phase transition) the
number of states cannot change abruptly, so the number of BPS states remains
invariant and the mass/charge relation does not renormalize[38]. (Here we also
assume that we do not cross curves of marginal stability).

3.1 M-branes

We briefly describe the connection of the brane solutions described in the previ-
ous section to M-theory. M-theory at low-energies is described by eleven dimen-
sional supergravity. The bosonic field content of eleven dimensional supergravity
consists of a metric, GMN , and a three-form antisymmetric tensor, AMNP . We
therefore expect that this theory has solutions describing extended objects cou-
pled “electrically” and “magnetically” to AMNP . Indeed, one finds a 2-brane
solution, M2, and a fivebrane solution, M5[39, 40]. The explicit form of the solu-
tion is as in (18), with αM2 = 1/3 for the M2 and αM5 = 2/3 for the M5 (there
is no dilaton field in 11d supergravity, so β = 0). In addition, we have the purely
gravitational solutions describing traveling waves and KK monopoles.

From the solutions of eleven dimensional supergravity one can obtain the so-
lution of IIA supergravity upon dimensional reduction. The Kaluza-Klein ansatz
for the bosonic fields leading to the string frame 10d metric is

ds211 = e−
2
3φ(x)gµνdx

µdxν + e
4
3φ(x)(dx11 + C

(1)
µ dx

µ)2

A = C(3) +B ∧ dx11 (32)

where B is the NSNS antisymmetric tensor and C(1) and C(3) are the RR anti-
symmetric tensors of IIA theory. Dimensionally reducing the M-branes along a
worldvolume or a transverse direction one obtains all solution of IIA as follows:

11d SUGRA W M2 M5 KK
↙ ↓ ↙ ↓ ↙ ↓ ↙ ↓

IIA SUGRA D0 W F1 D2 D4 NS5 D6 KK
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3.2 Intersection rules

In the previous section we described brane solutions of supergravity theories.
These solutions can be used as building blocks in order to construct new solu-
tions [41–51] (for a review see [52]). The new solutions can be interpreted as
intersecting (or in some cases overlapping) branes. In order to obtain a super-
symmetric solution only certain intersections are allowed.

The intersection rules are as follows:
One superimposes the single brane solutions using the rule that all pairwise
intersections should belong to a set of allowed intersections. If all harmonic
functions are taken to depend on the overall transverse directions (i.e. the di-
rections transverse to all branes) we are dealing with a “standard” intersection.
Otherwise the intersection will be called “non-standard”. In D = 11 there are
three standard intersections, (0| 2 ⊥ 2)4, (1| 2 ⊥ 5) and (3| 5 ⊥ 5) [42, 43, 47],
and one non-standard (1|5 ⊥ 5)[53, 43]. In the latter intersection the harmonic
functions depend on the relative transverse directions (i.e. the directions which
are worldvolume coordinates of the one but transverse coordinates of the other
fivebrane). In addition, one can add a wave solution along a common string. The
intersection rules in ten dimensions can be derived from these by dimensional
reduction plus T and S-duality. We collect the standard and non-standard inter-
section rules in the table below. (For intersections rules involving KK monopoles
see [49]). When both standard and non-standard intersection rules are used (as
for instance in the solutions of [54]), one has to specify which coordinates each
harmonic function depends on. This is usually clear by inspection of the inter-
section, but it can also be further verified by looking at the field equation(s) for
the antisymmetric tensor field(s).

standard non-standard

D = 11 (0|M2 ⊥ M2)

(1|M2 ⊥ M5)

(3|M5 ⊥ M5) (1|M5 ⊥ M5)

D = 10 (1
2
(p+ q − 4)|Dp ⊥ Dq) (1

2
(p+ q − 8)|Dp ⊥ Dq)

(1|F1 ⊥ NS5)

(3|NS5 ⊥ NS5) (1|NS5 ⊥ NS5)

(0|F1 ⊥ Dp)

(p− 1|NS5 ⊥ Dp) (p− 3|NS5 ⊥ Dp)

Table 3. Standard and non-standard intersections in ten and eleven dimensions.

There is a simple algorithm which leads to a non-extreme version of a given
supersymmetric solution (constructed according to standard intersection rules)
[44]. We will give these rules for M-brane intersections. This is sufficient as

4 The notation (q| p1 ⊥ p2) denotes a p1-brane intersecting with a p2-brane over a
q-brane.
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dimensional reduction and duality produce all standard intersections of type II
branes. It consists of the following steps:

(1) Make the following replacements in the d-dimensional transverse space-
time part of the metric:

dt2 → f(r)dt2 , dx2
1 + · · ·+ dx2

d−1 → f−1(r)dr2 + r2dΩ2
d−2 , f(r) = 1− µ

d−3

rd−3
,

(33)

and use the following harmonic functions,

HT = 1 +
QT

rd−3
, QT = µd−3 sinh2 αT ,

HF = 1 +
QF

rd−3
, QF = µd−3 sinh2 αF , (34)

for the constituent two-branes and five-branes, respectively.
(2) In the expression for the field strength F4 of the three-form field make

the following replacements:

H ′
T
−1 → H ′

T
−1 = 1− QT

rd−3
H−1

T , QT = µd−3 sinhαT coshαT ,

HF → H ′
F = 1 +

QF

rd−3
QF = µd−3 sinhαF coshαF , (35)

in the “electric” (two-brane) part, and in the “magnetic” (five-brane) part, re-
spectively. In the extreme limit µ → 0, αF → ∞, and αT → ∞, while the
charges QF and QT are kept fixed. In this case QF = QF and QT = QT , so that
H ′

T = HT . The form of F4 and the actual value of its “magnetic” part does not
change compared to the extreme limit.

(3) In the case there is a common string along some direction x, one can add
momentum along x. Then

−f(r)dt2 + dx2 → −K−1(r)f(r)dt2 +K(r)
(
dx− [K′−1(r) − 1]dt

)2
(36)

where

K = 1 +
QK

rd−3
, QK = µd−3 sinh2 αK ,

K ′−1 = 1− QK

rd−3
K−1 , QK = µd−3 sinhαK coshαK . (37)

In the extreme limit µ→ 0, αK →∞, the charge QK is held fixed, K = K′ and
thus the metric (36) becomes dudv + (K − 1)du2, where u, v = x± t.
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4 Black holes in string theory

Black holes arise in string theory as solutions of the corresponding low-energy su-
pergravity theory. String theory lives in 10 dimensions (or 11 from the M-theory
perspective). Suppose the theory is compactified on a compact manifold down
to d spacetime dimensions. Branes wrapped in the compact dimensions will look
like pointlike objects in the d-dimensional spacetime. So, the idea is to construct
a configuration of intersecting wrapped branes which upon dimensional reduc-
tion yields a black hole spacetime. If the brane intersection is supersymmetric
then the black hole will be an extremal supersymmetric black hole. On the other
hand, non-extremal intersections yield non-extremal black holes.

In general, the regime of the parameter space in which supergravity is valid
is different from the regime in which weakly coupled string theory is valid. Thus,
although we know that a given brane configuration becomes a black hole when we
go from weak to strong coupling, it would seem difficult to extract information
about the black hole from this fact.

For supersymmetric black holes, however, the BPS property of the states
allows one to learn certain things about black holes from the weakly coupled
D-brane system. For example, one can count the number of states at weak cou-
pling and extrapolate the result to the black hole phase. In this way, one derives
the Bekenstein-Hawking entropy formula (including the precise numerical co-
efficient) for this class of black holes[55, 56]. We will review this calculation in
section 4.1.

In the absence of supersymmetry, we cannot in general follow the states
from weak to strong coupling. However, one could still obtain some qualitative
understanding of the black hole entropy. On general grounds, one might expect
that the transition from weakly coupled strings to black holes happens when
the string scale becomes approximately equal to the Schwarzschild radius (or
more generally to the curvature radius at the horizon). This point is called the
correspondence point. Demanding that the mass and all the other charges of the
two different configurations match, one obtains that the entropies also match
[57]. These considerations correctly provide the dependence of the entropy on
the mass and the other charges, but the numerical coefficient in the Bekenstein-
Hawking entropy formula remains undetermined.

In [58] a different approach was initiated. Instead of trying to determine
the physics of black holes using the fact that at weak coupling they become
a set of D-branes, the symmetries of M-theory are used in order to map the
black hole configuration to another black hole configuration. Since the U-duality
group involves strong/weak transitions one does not, in general, have control
over the microscopic states that make up a generic configuration. We will see,
however, that the situation is better when it comes to black holes! U-duality
maps black holes to black holes with the same thermodynamic characteristics,
i.e. the entropy and the temperature remain invariant. This implies that the
number of microstates that make up the black hole configuration remains the
same. Notice that to reach this conclusion we did not use supersymmetry, but the
fact that the area of the horizon of a black hole (divided by Newton’s constant)
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tell us how many degrees of freedom the black hole contains. We discuss this
approach in section 4.2.

The effect of the U-duality transformations described in section 4.2 is to re-
move the constant part from certain harmonic functions (and also change the
values of some moduli). One can achieve a similar result by taking the low-energy
limit α′ → 0 while keeping fixed the masses of strings stretched between different
D-branes. Considerations involving this limit lead to the adS/CFT correspon-
dence[59]. This will be discussed in section 4.3.

4.1 Extremal black holes and the D-brane counting

We will analyze five dimensional black holes. Four dimensional ones [60] can be
analyzed in a completely analogous manner[61, 62]. Rotating black holes have
been discussed in [63–65].

5d Extremal Black Holes To study extremal charged five dimensional black
holes we build a configuration of intersecting branes using the supersymmetric
intersection rules. In particular, we consider the configuration of N5 D5-brane
wrapped in x1, . . . , x5, N1 D1-brane wrapped in x1, with NK momentum modes
along x1. The coordinates xi, i = 1, . . . , 5 are taken periodic with periods Ri.
Explicitly, the spacetime fields are

ds2 = H
1/2
1 H

1/2
5

[
H−1

1 H
−1
5

(
−K−1dt2 +K(dx1 − (K−1 − 1)dt)2

)
+H−1

5 (dx22 + · · ·+ dx2
5) + dx

2
6 + · · ·+ dx2

9

]
(38)

and

e−2φ = H−1
1 H5, C

(2)
01 = H−1

1 − 1

Hijk =
1

2
εijkl∂lH5, i, j, k, l = 6, . . . , 9 (39)

r2 = x2
6 + · · ·+ x2

9 (40)

The harmonic functions are equal to

H1 = 1 +
Q1

r2
, Q1 =

N1gsα
′3

V

H5 = 1 +
Q5

r2
, Q5 = N5gsα

′

K = 1 +
QK

r2
, QK =

NKg
2
sα

′4

R2
1V

(41)

where V = R2R3R4R5 and the charges have been calculated using (29).
Upon dimensional reduction over the periodic coordinates x1, . . . , x5, using

(28), we obtain

ds2E,5 = λ
−2/3dt2 + λ1/3(dr2 + r2δΩ2

3) (42)
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where

λ = H1H5K = (1 +
Q1

r2
)(1 +

Q5

r2
)(1 +

QK

r2
) (43)

This is an extremal charged black hole. The horizon is located at r = 0. The
area of the horizon and the five dimensional Newton’s constant are equal to

A5 = (r2λ1/3)3/2
∣∣
r=0
ω3 =

√
Q1Q2QK(2π2)

G
(5)
N =

G
(10)
N

(2π)5R1V
(44)

Therefore, the entropy is equal to

S =
A5

4G5
= 2π

√
N1N5NK (45)

For the supergravity to be valid we need to suppress string loops and α′

corrections. We suppress string loops by sending gs → 0, while keeping the
charges Qi fixed. These charges are the characteristic scales of the system. In
order to suppress α′ corrections they should be much larger than the string scale,

Q1, Q5, QK � α′ (46)

Taking the compactification radii to be of order ls we obtain

gsN1, gsN5, g
2
sNK � 1 (47)

This means that NK � N1 ∼ N5 � 1.

D-brane counting We now turn to the weak-coupling D-brane configuration
in order to compute the D-brane entropy. Counting the degeneracy of D-brane
states translates into the question of counting BPS states in the D-brane world-
volume theory[66, 58, 68–70]. For the system we are interested in, and taking the
torus T 4 in the relative transverse directions to be small, R2, R3, R4, R5 � R1,
the relevant worldvolume theory is 1+1 dimensional. This theory is the infrared
limit of the Higgs branch of the 1+1 gauge theory, and it has been argued to be
a deformation of the supersymmetric N = (4, 4) sigma model with target space
(T 4)N1N5/SN1N5 [68]. Since (T 4)N1N5/SN1N5 is a hyperkaehler manifold of di-
mension 4N1N5, the sigma model has central charge equal to 6N1N5. This is the
central charge of 4N1N5 bosonic and fermionic degrees of freedom (since scalars
contribute 1 and fermions 1/2 to the central charge). Roughly, these degrees of
freedom are the ones describing the motion of the D1 brane inside the D5 brane.
For details we refer to [10].

In the worldvolume theory we get that the right movers are in their ground
state and the left movers carry NK momentum modes. Thus, the degeneracy of
the D-brane system is given by the degeneracy of the conformal field theory of
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central charge c = 6N1N5 at level NK . For a unitary conformal field theory the
degeneracy is given by Cardy’s formula[71]

d(c,NK) ∼ exp(2π

√
c

6
NK) (48)

Therefore, the entropy is equal to

S = log d(c,NK) = 2π
√
N1N5NK (49)

This is in exact agreement with (45).
Let us now inspect the regime of validity of the D-brane picture. Open string

diagrams pick up a factor gsN1,5 because the open string coupling constant is gs
and there are N1,5 branes where the string can end (or equivalently one should
sum over the Chan-Paton factors). Processes involving momenta involve a factor
g2sNK [72]. Therefore, conventional D-brane perturbation theory is good when

gsN1, gsN5, g
2
sNK � 1⇒ Q1, Q5, QK � α′, (50)

which is precisely the opposite regime to (47) where the classical supergravity
solution is good. The D-brane/string perturbation theory and black hole regimes
are thus complementary. This feature is related to open-closed string duality. Due
to supersymmetry, however, one can extrapolate results obtained in the D-brane
phase to the black hole phase.

4.2 Non-extremal black holes and the BTZ black hole

In this section we review the approach of [58]. The idea is to use U-dualities
in order to connect higher dimensional black holes to lower dimensional ones.
Such ideas also appeared in [73]. The U-duality transformation essentially maps
the initial black hole to its near-horizon region (but Schwarzschild black holes
are also included as a limiting case). In particular, four and five dimensional
black holes are mapped to the three dimensional BTZ black hole. The U-duality
group of string (or M) theory on a torus does not change the number of non-
compact dimensions. However, black hole spacetimes always contain an extra
timelike isometry. This extra isometry allows for a duality transformation, the
shift transformation[74], that yields trans-dimensional transformations. A thor-
ough discussion (that includes global issues) of the shift transformation is given
in section 4.2.

U-duality and entropy Let us discuss whether one can use U-duality in order
to infer a state counting for a given black hole from the counting of a U-dual
configuration. The U-duality group is conjectured (and widely believed) to be an
exact symmetry of M-theory. This symmetry, however, is spontaneously broken
by the vacuum. The vacua of M-theory (compactified on some manifold) are
parametrized by a set of constants. These constants are expectation values of
scalar fields arising from the compactification. U-duality acts on these scalars, so
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it transforms one vacuum to another. Therefore, from a state on a given vacuum
one can deduce by U-duality the existence of another state in a new vacuum.
Since the U-duality group contains S-duality which is strong/weak coupling du-
ality, one cannot in general continue the new state back to the original vacuum,
unless this state is protected from quantum corrections. States with this prop-
erty are BPS states. Therefore, the spectrum of BPS states is invariant under
U-duality transformations. This implies in particular that if we want to count
the number of states that make up an extremal supersymmetric black hole, we
may use any U-duality configuration. Indeed, the entropy formula for extremal
black holes is U-duality invariant[75–78].

The question is whether it is justified to use U-duality in more general con-
text. A remarkable fact about S and T duality transformations is that they leave
invariant both the entropy and the temperature of black holes connected by S
and T transformations. For S-duality this follows from the fact that S-duality
leaves invariant the Einstein metric. For T-duality, this has been shown in [23].
We review this argument here.

Consider a black hole solution with a timelike isometry ∂/∂t, a compact
spacelike isometry ∂/∂x, and a NSNS 2-form B turned on. Smoothness near the
horizon requires[23] that the Btx vanishes at the horizon. In order for the T-dual
geometry to also be smooth (i.e. the dual 2-form to vanish at the horizon) we
require in addition that Ax = 0 at the horizon (see (13)-(14)). (This can always
be achieved by a coordinate transformation.) RR potentials that can be turned
into Bxt by dualities are also required to vanish at the horizon.

Let us first discuss the entropy. In d dimensions the Einstein metric is given
by (see (28)),

ds2E = e−4φ/(d−2)[gxx(dx+Aidx
i)2 + ḡijdx

idxj ] (51)

The metric induced on the horizon is of the same form but with i, j taking values
only over the d− 3 angular variables. Therefore, the area is equal to

Ad =

∫ √
(e−4φ/(d−2))d−2gxx det ḡ =

∫
e−2φ√gxx

√
det ḡ (52)

One may check that e−2φ√gxx is a T-duality invariant combination (and ḡ was
invariant to start with). Therefore, the entropy of black holes is T-duality in-
variant.

Let us also note that the entropy formula is invariant under dimensional
reduction

S =
A10

4G
(10)
N

=
Ad

4G
(d)
N

(53)

since Ad = A10/V10−d and G
(d)
N = G

(10)
N /V10−d, where V10−d is the volume of

the compactification space.
We now turn to the discussion of the behavior of the Hawking tempera-

ture under duality transformations. Perhaps the simplest way to compute the
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Hawking temperature is to analytically continue to Euclidean space by taking
t→ τ = −it. The black hole spacetime becomes then a non-singular Riemannian
manifold provided that the Euclidean time is periodically identified with period
equal to the inverse Hawking temperature. Suppose that the horizon is at r = µ.
One can calculate the temperature to be equal to (we assume that the event
horizon is non-degenerate)

TH =
∂rgττ

4π
√
gττgrr

∣∣∣∣∣
r=µ

(54)

It follows by inspection that the Hawking temperature is invariant under non-
singular Weyl rescaling. Hence, it does not make any difference whether we
consider the Einstein or the string frame. We choose to work with the string
frame. From (13) we get

gττ = ḡττ + gxxAτAτ , grr = ḡrr + gxxArAr (55)

Assuming that Ar is finite at the horizon (in all cases we will consider Ar = 0),
and using gxx|r=µ = Aτ |r=µ = 0 we obtain

TH =
∂rḡττ

4π
√
ḡττ ḡrr

∣∣∣∣∣
r=µ

(56)

which is manifestly T-duality invariant.

Therefore, an arbitrary combination of S and T transformations will lead
to a black hole solution with the same entropy and temperature as the origi-
nal one. This implies that black holes connected by U-duality transformations
have the same number of microstates. This is somewhat surprising since for non-
supersymmetric black holes we cannot follow the states during U-duality trans-
formations. As we move from one configuration to a U-dual one, some states
may disappear. However, an equal number of states has to appear, since the fi-
nal configuration has the same entropy. We do not have a microscopic derivation
of this fact. We believe that such derivation will be an important step towards
further understanding of black holes.

A general U-duality transformation may involve strong/weak transitions. The
U-duality transformations, however, that we will use below do not involve such
strong/weak transitions. Actually we shall exclusively be in the black hole phase.
We will only consider transformations, call them UT , that are connected to T-
dualities by a similarity transformation

UT = U−1TU (57)

where U denotes a generic U-duality transformation and T a sequence of two
T-duality transformations (so UT acts within the same theory).
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The shift transformation As we have discussed, we construct black holes
configurations using appropriate non-extremal intersections of extremal branes.
These configurations are solutions of the field equations provided the various
harmonic functions Hi appearing in the solution satisfy Laplace’s equations,

∇2Hi = 0, (58)

where ∇ is the Laplacian in the overall transverse space. The constant part
of the harmonic function is usually set to one in order for the solution to be
asymptotically flat. Clearly, up to normalization, the only other choice is to
set this constant to zero. This choice has the dramatic effect of changing the
asymptotics of the solution. We will see, however, that there is a duality trans-
formation, the shift transformation, that removes the one from the harmonic
function. This duality transformation has appeared in the past in various con-
texts [79, 20, 28, 73, 74, 58, 80, 25].

Consider the solution describing a non-extremal fundamental string in d+ 1
dimensions

ds2 = H−1(r)(−f(r)dt2 + dx2
1) + f

−1(r)dr2 + r2dΩ2
d−2

Btx1 = H ′−1 − 1 + tanhα

e−2φ = H (59)

The coordinate x1 is periodic with period R1. The various harmonic functions
are equal to

H = 1 +
µd−3 sinh2 α

rd−3
,

H ′−1 = 1− µ
d−3 sinhα coshα

rd−3
H−1,

f = 1− µ
d−3

rd−3
(60)

The constant part of the antisymmetric tensor Btx1 is fixed by the requirement
that Btx1 vanishes at the horizon. This is required by regularity[23], as described
in the previous section. The entropy and the temperature are given by

S =
1

4G
(d+1)
N

2πR1 coshαµ
d−2ωd−2, TH =

(d− 3)

4πµ coshα
. (61)

Notice that in order to calculate the area one first has to reach the Einstein
frame.

We now perform the following sequence of T-dualities that we call the shift
transformation:

shift = T ∂
∂t′

(
∂

∂x′1
) ◦ T ∂

∂t
(
∂

∂x1
) (62)



348 Kostas Skenderis

where

∂

∂x′1
= −e−α ∂

∂t
+

1

coshα

∂

∂x1

∂

∂t′
= coshα

∂

∂t
(63)

The notation Tk1(k2) indicates a T-duality transformation along the killing vec-
tor k2 keeping k1 fixed.

Let us give the details. After the first T-duality, T∂/∂t(∂/∂x1), we get a non-
extremal wave solution,

ds2 = −H−1(r)f(r)dt2 +H(r)
(
dx1 − (H ′−1(r) − 1 + tanhα)dt

)2

+f−1(r)dr2 + r2dΩ2
d−2 , (64)

The radius of x1 is now α
′/R1. In addition, gs → ls/R1, soG

(d+1)
N → G(d+1)

N α′/R2
1.

One can check that this solution has the same entropy and temperature as the
solution in (59).

We would like now to dualize along (63). To do this we first reach adapted
coordinates (

t
x1

)
=

(
coshα −e−α

0 1
coshα

)(
t′

x′1

)
. (65)

The metric in the new coordinates takes the form (we have dropped the primes)

ds2 = −H̃−1(r)f(r)dt2 + H̃(r)
(
dx1 − (H̃−1(r) − 1)dt

)2

+ f−1(r)dr2 + r2dΩ2
d−2 ,

(66)

where now

H̃(r) =
µd−3

rd−3
. (67)

The radius of x1 also changes to coshα/R1.
Now, that we have reached adapted coordinates we can use (12) to obtain,

ds2 = H̃−1(r)(−f(r)dt2 + dx2
1) + f

−1(r)dr2 + r2dΩ2
d−2

Bτx1 = H̃−1 − 1

e−2φ = H̃ (68)

The radius of x1 is now equal to R1/ coshα. In addition, there is again a change
in Newton’s constant. One can calculate the temperature and entropy of this
solution. The result for the entropy is the same in (61). The temperature is
equal to TH = (d − 3)/4πµ. This differs by a factor of coshα from (61). This is
due to the fact that the timelike killing vectors ∂/∂t and ∂/∂t′ differ by a factor
of coshα (see (63)).
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To summarize, the effect of the shift transformation (62) is to change the solu-
tion by removing the constant part of the harmonic functions. All the dependence
of the metric and the antisymmetric tensor on the non-extremality angle α re-
sides in the radius of the compact direction which after the shift transformation is

equal to R1/ coshα. In addition, gs → gs/ coshα, so G(d+1)
N → G(d+1)

N / cosh2 α.

The orbits of the killing vector ∂/∂x′1 are non-compact since the time co-
ordinate is non-compact. This means that (59) and (68) are not equivalent. To
make the duality transformation a symmetry we need to compactify the orbits of
the killing vector ∂/∂x′1.

5 The fact, however, that the entropy and temperature
of the one black hole can be deduced from the entropy and temperature of the
other indicates that the two solutions are in the same universality class (in a
loose sense).

The norm of the killing vector (63) is

|∂/∂x′1|2 =
µd−3

rd−3
(69)

therefore the isometry is spacelike everywhere but it becomes null at spatial
infinity. Let us examine the (r, x1) part of the metric close to spatial infinity.
From (66) we get

ds2(r,x1)
= dr2 +

µd−3

rd−3
dx2

1 (70)

For d = 5, which will be the case in the next section where we discuss five
dimensional black holes, this is exactly the same metric as in (16). This suggests
to consider r, x1 as polar coordinates and the isometry in x1 as a rotational
isometry with a fixed point at infinity.

Connection of 5d and 4d black holes to the BTZ black hole We are
now ready to use our results to study non-extremal 5d and 4d black holes. We
will explicitly work out the case of 5d black holes. The analysis of 4d black holes
is completely analogous [58]. Four and five dimensional black holes can also be
mapped by similar operations [73, 58, 82] to two dimensional black holes[83]. Let
us also note that the manipulations we describe here cannot connect the BTZ
black hole to higher than five dimensional black holes [58]. The relation between
the near-horizon limit of higher-dimensional black holes and the BTZ black hole
has also been investigated in [84].

5 One way to make the orbits compact is to compactify time with appropriately chosen
radius. It has been argued in [81] that a spatially wrapped brane should also be
wrapped in time in order to avoid conical singularities at the horizon. The two issues
may be related. The time coordinate is naturally compact in Euclidean black holes,
the radius of the time coordinate being the inverse of the Hawking temperature. One
may try to formulate the analysis in the Euclidean framework. The problem is then
that the coordinate transformation (65) is complex.
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The solution we will study is the non-extremal version of (38). Explicitly, the
metric, the dilaton and the antisymmetric tensor are given by

ds210 = H
1/2
1 H

1/2
5

[
H−1

1 H
−1
5

(
−K−1fdt2 +K

(
dx1 − (K ′−1 − 1)dt

)2)
+H−1

5 (dx22 + · · ·+ dx2
5) + (f−1dr2 + r2dΩ2

3)
]
, (71)

and

e−2φ = H−1
1 H5 , C

(2)
01 = H ′

1
−1 − 1 + tanhα1 ,

Hijk =
1

2
εijkl∂lH

′
5 , i, j, k, l = 6, . . . , 9 , (72)

f = 1− µ
2

r2
, r2 = x2

6 + · · ·+ x2
9 ,

The coordinates xi, i = 1, . . . , 5, are assumed to be periodic, each with radius
Ri.

The various harmonic function are given by

K = 1 +
QK

r2
, K ′−1 = 1− QK

r2
K−1, QK = µ2 sinh2 αK ,

QK = µ2 sinhαK coshαK

H1 = 1 +
Q1

r2
, H ′

1
−1 = 1− Q1

r2
H−1

1 , Q1 = µ
2 sinh2 α1,

Q1 = µ
2 sinhα1 coshα1

H5 = 1 +
Q5

r2
, H ′

5 = 1 +
Q5

r2
, Q5 = µ

2 sinh2 α5,

Q5 = µ
2 sinhα5 coshα5 , (73)

Dimensionally reducing in x1, x2, x3, x4, x5, one gets a 5d non-extremal black
hole, whose metric in the Einstein frame is given by

ds2E,5 = −λ−2/3fdt2 + λ1/3(f−1dr2 + r2dΩ2
3) , (74)

where

λ = H5H1K =

(
1 +

Q5

r2

)(
1 +

Q1

r2

)(
1 +

QK

r2

)
. (75)

This black hole is charged with respect to the Kaluza-Klein gauge fields origi-
nating from the antisymmetric tensor fields and the metric. When all charges
are set equal to zero one obtains the 5d Schwarzschild black hole. The metric
(74) has an outer horizon at r = µ and an inner horizon at r = 0.

The Bekenstein–Hawking entropy may easily be calculated to be

S =
A5

4G
(5)
N

=
1

4

(2π)5R1V

G
(10)
N

µ3ω3 coshα5 coshα1 coshαK , (76)
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where V = R2R3R4R5 is the compactification volume in the relative transverse

directions, ω3 is the volume of the unit 3-sphere and G
(5)
N and G

(10)
N are Newton’s

constant in five and ten dimensions, respectively. The temperature is given by

TH =
1

2πµ coshα1 coshα5 coshαK
(77)

We will now show that one can connect this black hole to the BTZ black hole
times a 3-sphere using transformations of the form (57). A U-transformation is
used to map a given brane to a fundamental string. The T transformation is the
shift transformation (62).

For the case at hand we need to perform the shift transformation to the D1
and the D5 brane. The final result is given by the metric in (71), but with

H1 =
µ2

r2
, H5 =

µ2

r2
, (78)

and, in addition,

e−2φ = 1 , C
(2)
01 = H−1

1 − 1 ,

Hijk =
1

2
εijkl∂l(H5−1) , i, j, k, l = 6, . . . , 9 . (79)

In addition the compactification volume becomes V → V/(coshα1 coshα5) (here,
for convenience in the presentation, we assume that the U-duality transformation
mapped the D1 and D5 into a fundamental string wrapped in one of the relative

transverse directions). Furthermore, G
(10)
N → G

(10)
N /(cosh2 α1 cosh

2 α5). Notice
that the parameters α1 and α5 associated to the charges of the original D1 and
D5 brane do not appear in the background fields anymore.

Dimensionally reducing along x2, x3, x4, x5 we find

ds2E,6 = ds
2
BTZ + l2dΩ2

3 , (80)

where

ds2BTZ = −
(ρ2 − ρ2+)(ρ2 − ρ2−)

l2ρ2
dt2 + ρ2(dϕ+

ρ+ρ−
lρ2

dt)2+

+
l2ρ2

(ρ2 − ρ2+)(ρ2 − ρ2−)
dρ2 (81)

is the metric of the non-extremal BTZ black hole in a space with cosmological
constant Λ = −1/l2, with inner horizon at ρ = ρ− and outer horizon at ρ = ρ+.
The mass and the angular momentum of the BTZ black hole are equal to

M =
ρ2+ + ρ2−
8G

(3)
N l

2
, J =

ρ+ρ−
4G

(3)
N l
. (82)
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In terms of the original variables:

l = µ , ϕ =
x1

l
, ρ2 = r2 + l2 sinh2 αK ,

ρ2+ = l2 cosh2 αK , ρ2− = l2 sinh2 αK . (83)

In addition,

φ = 0 , C
(0)
tϕ = (ρ2 − ρ2+)/l , H = l2ε3 , (84)

where ε3 is the volume form element of the unit 3-sphere. Therefore, the met-
ric (80) describes a space that is a product of a 3-sphere of radius l and of a
non-extremal BTZ black hole. Notice that the BTZ and the sphere part are
completely decoupled.

We can now calculate the entropy of the resulting black hole. The area of the
horizon is equal to

A3 = 2π
R1

µ
µ coshαK , (85)

whereas Newton’s constant is given by

G
(3)
N =

G
(10)
N

(2π)4V (coshα1 coshα5)(µ3ω3)
. (86)

It follows that S = A3/(4G
(3)
N ) equals (76), i.e. the Bekenstein–Hawking entropy

of the final configuration is equal to the one of the original 5d black hole. Notice
that the Newton constant in (86) contains the parameter α1, α5, i.e. carries
information on the charge of the original D1 and D5 brane. The temperature of
the BTZ black hole is equal to

TBTZ =
ρ2+ − ρ2−
2πρ+l2

(87)

Transforming to the original variables we get

TBTZ =
1

2πµ coshαK
= coshα1 coshα5TH (88)

precisely as predicted by the duality transformations.
We finish this section by pointing out a remarkable fact: We have started

with the solution (71) of the low-energy supergravity. This solution is expected
to get α′ corrections. Then we used the T-duality rules (12) which are also valid
only to first orders in α′. The final result, however, is valid to all orders in α′!

The fields in (81), (84) have their canonical value, so that both the BTZ and
the sphere part are separately exact classical solutions of string theory,6 i.e. there

6 For the D1-D5 system that we discuss we obtain a CFT describing a D-string. One
gets a fundamental string from the S-dual system of F1-NS5.
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is an exact CFT associated to each of them. For the BTZ black hole the CFT
corresponds to an orbifold of the WZW model based on SL(2, IR) [79, 85, 86],
whereas for S3 and the associated antisymmetric tensor with field strength H ,
given in (84), the appropriate CFT description is in terms of the SU(2) WZW
model. The same result also holds in the case of 4d black holes[58]. This time
the black hole is mapped to BTZ×S2. Again all fields are such that there is an
exact CFT associated to each factor. The one associated with S2 is the monopole
CFT of [87].

The situation seems quite similar to the case described at the end of section
2.3: There we had the singular solution (16) of the lowest order in α′ beta
function equation which becomes an exact CFT after dualization with respect
to a killing vector whose norm vanishes at spatial infinity. However, to establish
equivalence one needs all order in α′.

In the case of black holes we have:
The singular black hole spacetime (71) that solves the lowest order in α′ beta
functions becomes, after dualization with respect to a killing vector whose norm
vanishes at spatial infinity (plus other dualities), the BTZ black hole which
contains no curvature singularity and is an exact CFT. (So, one could argue
that the original singularity is resolved by α′ corrections).

We find these similarities quite suggestive. However, it is difficult to see how
one could overcome the problem of the non-compactness of the orbits of the
killing vector in (63).

4.3 Low-energy limit and the near-horizon geometry

Near-horizon limit of branes We have argued that the physical system de-
scribing a black hole in strong coupling becomes a set of intersecting branes in
weak coupling. We emphasize that there is only one physical system. Its descrip-
tion, however, in terms of some weakly coupled theory changes as we change the
parameters of the theory, and furthermore, at any given regime of the parameter
space, there is only one weakly coupled description.

One may view the different descriptions as effective theories that are adequate
to describe the system at specific range of the parameter space. As we go outside
this range new degrees of freedom become important and a new description takes
over. In some cases, however, a given theory may still be well-defined for any
value of the coupling constant. In this case we get a dual description of this
theory.

Let us consider N coincident Dp-branes. At weak coupling they have a de-
scription as hypersurfaces where string can end. There is worldvolume theory
describing the collective coordinates of the brane. The worldvolume fields in-
teract among themselves and with the bulk fields. We would like to consider a
limit which decouples the bulk gravity but still leaves non-trivial dynamics on
the worldvolume. In low energies gravity decouples. So, we consider the limit
α′ → 0 , which implies that the gravitation coupling constant, i.e. Newton’s con-
stant, GN ∼ α′4, also goes to zero. We want to keep the worldvolume degrees of
freedom and their interactions. Since the worldvolume dynamics are governed by
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open string ending on the D-branes, we keep fixed the masses of strings stretched
between D-branes as we take the limit α′ → 0. In addition, we keep fixed the
coupling constant of the worldvolume theory, so all the worldvolume interac-
tions remain present. For N coincident D-branes, the worldvolume theory is an
SU(N) super Yang-Mills theory (we ignore the center of mass part). The YM
coupling constant is equal (up to numerical constants) to g2Y M ∼ gs(α′)(p−3)/2.
Thus we get that the following limit,

α′ → 0, U =
r

α′
= fixed, g2Y M = fixed (89)

yields a decoupled theory on the worldvolume.
At strong coupling the Dp branes are described by the black p-brane space-

times (18). Let us consider the limit (89) for this spacetime. One gets that the
harmonic function becomes,

Hi → g2Y MN(α′)−2Up−7 (90)

The limit (89) is a near-horizon limit since r = Uα′ → 0 and there is a horizon
at r = 0. We see that the effect of the limit (89) is similar to the effect of the
shift transformation, namely the one is removed from the harmonic function.
Inserting (90) back in the metric one finds that the spacetime becomes conformal
to adSp+2 × S8−p [54, 88] (for M-branes, one gets adS4 × S7 for the M2 brane
and adS7 × S4 for the M5 brane [89]).

Let us now consider the particular case of N coincident D3-branes. The
worldvolume theory is d = 4, N = 4 SU(N) SYM theory. This is a finite unitary
theory for any value of its coupling constant. On the other hand, this system
has a description as a black 3-brane at strong coupling. In the limit (89) we
get that the spacetime becomes adS5 × S5. In order to suppress string loops
we need to take N large. For the supergravity description to be valid ’t Hooft’s
coupling constant[90], g2Y MN , must be large. We therefore get that the strong
(’t Hooft) coupling limit of large d = 4, N = 4 SU(N) SYM is described by adS
supergravity[59]!
N = 4 d = 4 SYM theory is a well-defined unitary finite theory, whereas

supergravity is a non-renormalizable theory. It is best to think about it as the low
energy effective theory of strings. Therefore, one should really consider strings
on adS5 × S5. In this way we reach the celebrated adS/CFT duality[59]7:

Four dimensional N = 4SU(N) SYM is dual to string theory on adS5 × S5.
This conjecture was made precise in [92, 93], where a prescription for eval-

uation of correlation functions was proposed. Subsequently a large number of
papers appeared, all of them supporting the adS/CFT duality.

Let us examine again our result. We obtained that five dimensional adS
gravity is equivalent to d = 4, N = 4 SYM theory. In other words, a gravity
theory in d + 1(=5) dimensions is described in terms of a field theory without

7 Many of the elements leading to this conjecture appeared in [91]. In [58], the world-
volume theory of the D3 brane was argued to be mapped to the singleton of adS5

by the shift transformation.
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gravity in d(=4) dimensions. This is just holography[94,95]! One can further
show that the boundary theory indeed has one degree of freedom per Planck
area[96].

Similar results hold for other brane configurations as one can always consider
the low energy limit. In the case of conformal worldvolume theories there is
an adS factor on the gravity side. In these cases the worldvolume theory is
valid at all energy scales, and these considerations provide a weakly coupled
gravity description of a strongly coupled theory. In the non-conformal cases the
worldvolume SYM theory is a theory with a cut-off. As we change the cut-
off new degrees of freedom become relevant and the description in terms of a
SYM theory may not be valid. In these cases one finds that as we change the
parameters of the theory there is always some perturbative description[97, 98].
The black p-brane solution becomes conformal to anti-de Sitter spacetime and
the gravity description is in terms of gauged supergravities which have domain-
wall vacua[88].

Low-energy limit of black hole spacetimes Let us discuss the low energy
limit for black hole configurations. We will discuss in detail the 5d case. The 4d
case is very similar [99]. Rotating black holes have been considered in [100].

Consider the black hole configuration in (38). We go to low energies keeping
fixed the masses of stretched strings, the radius of coordinate which the string
is wrapped in and the radii of the relative transverse directions in string units,

α′ → 0, U =
r

α′
fixed, R1, ri =

Ri√
α′

fixed i = 2, . . . , 5 (91)

Notice that R1 � Ri, i = 2, . . . , 5, as in section 4.1. Since the horizon is at r = 0
and r = Uα′ → 0 this is at the same time a near-horizon limit. Therefore, the
resulting configuration has the same number of degrees of freedom as the original
one (since the area of the horizon is a measure of the degrees of freedom).

In the limit (91) the harmonic functions (41) become

H1 →
1

α′
Q̃1

U2
, Q̃1 =

gsN1

v
,

H5 →
1

α′
Q̃5

U2
, Q̃5 = gsN5

K → 1 +
Q̃K

U2
, Q̃K =

g2sNK

R2
1v

(92)

where v = r2r3r4r5. Notice that the low-energy limit removes the one from the
harmonic function of the D1 and D5 brane exactly as in section 4.2. Let us define
new variables

ρ2 = U2 + ρ20, φ = x1/R1, tBTZ = t
Q̃1Q̃5

R2
1

ρ20 = Q̃K , l2 =
Q̃1Q̃5

R2
1

(93)
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The metric (38) becomes

ds2 = α′
R2

1√
Q̃1Q̃5

[ds2BTZ +
Q̃1

R2
1

(dx22 + · · ·+ dx2
5) +

Q̃1Q̃5

R2
1

dΩ2
3 ]

e−2φ =
Q̃5

Q̃1

(94)

where ds2BTZ is the metric (81) with ρ+ = ρ− = ρ0, i.e. the metric of the extremal
BTZ black hole. The overall factor in (94) originates from the fact that we want
to have the angle φ with unit radius. We move this overall factor to Newton’s
constant by a Weyl rescaling. The three dimensional Netwon’s constant is then
equal to (taking into account the dilaton, and arranging such that the 3d metric
is the standard BTZ metric (81))

G
(3)
N =

g2s

4R1v

√
Q̃1Q̃5

(95)

Notice that all the factors of α′ have cancelled out. The mass, the angular mo-
mentum and the area of the horizon of the BTZ black hole are equal to

M = Jl, J =
ρ20

4G
(3)
N l

= NK , A = 2πρ0 = 2π

√
Q̃K (96)

Therefore,

S = 2π
R1v

g2s

√
Q̃1Q̃5Q̃K = 2π

√
N1N5NK (97)

as in (45) (as it should since we just took the near-horizon limit). Therefore, at
low energies the physics of extremal black holes is governed by the BTZ black
hole.

Let us now move to non-extremal black holes. In this case, the low energy
limit is supplemented by the condition[101],

µ0 =
µ

α′
fixed (98)

The non-extremal black hole (71) has an outer horizon at r = µ and an inner
horizon at r = 0. Therefore, the low-energy limit (91), (98) is a near inner-
horizon rather than near outer-horizon limit. As a result the entropies do not
agree in general. To see this observe that the effect of the low energy limit (91),
(98) is to remove the one from the harmonic functions H1 and H5 but leave K
unchanged[101]. Since before we take the low energy limit, Hi(r = µ) = cosh2 αi,
i = 1, 5 and after the low energy limit Hi(r = µ) = sinh2 αi, the entropies of
the two configurations differ by a factor of tanhα1 tanhα5. Unless this factor
is equal to one, the low energy configuration will contain different number of
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degrees of freedom. This factor is equal to one in the dilute gas approximation
[102]

α1, α5 � 1, (99)

and therefore the entropies agree in this approximation. Far from extremality
the number of degrees of freedom changes as we go to low energies. In all cases
the low energy regime is governed by the BTZ black hole. This result should be
contrasted with the result in the previous section. There we also found that 4d
and 5d black holes are connected to the BTZ black hole. All our transformations,
however, were isoentropic, and there was no limit involved. We only needed that
the supergravity approximation is valid.

Let us finish by presenting a microscopic derivation of the Bekenstein-Hawking
entropy formula for extremal black hole (38) using the results of this section. It
has been shown by Brown and Henneaux [103] that the asymptotic symmetry
group of adS3 is generated by two copies of the Virasoro algebra with central
charge

c =
3l

2G
(3)
N

(100)

This central charge was also derived through the adS/CFT correspondence in
[104]. Therefore, any consistent theory of gravity on adS3 is conformal field
theory with central charge equal to (100).

The generators of the asymptotic Virasoro are related to the mass and an-
gular momentum as

M =
1

l
(L0 + L̄0),

J = L0 − L̄0 (101)

where we have normalized L0, L0 such that they vanish for the massless black
hole.

In the case of the 5d extremal black hole, and after the low-energy limit is
taken, we obtain a geometry of the form BTZ×S3×T 4. One may dimensionally
reduce over the compact spaces to obtain the BTZ black hole and a set of matter
fields. The BTZ black hole is asymptotically adS3 so quantum theory in this
space is described by a CFT. We can calculate the central charge using (93),
(95). The result is

c = 6N1N5 (102)

This is the same value as the one we found in section 4.1! In addition, from (96)
we obtain L0 = J = NK , L̄0 = 0. Thus, we get the same description as in the
D-brane side. This is the same unitary CFT but we are now at strong coupling.
Therefore, Cardy’s formula apply and, (for large black holes, so NK � 1) we get
correctly (97).
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This counting of states generalizes immediately to non-extremal BTZ black
holes [105, 106]8. (From (101) we get L0, L̄0 in terms of M and J . We also
know c from (100). Applying Cardy’s formula we get the Bekenstein-Hawking
entropy formula). A crucial point is that in order for Cardy’s formula to apply we
need the CFT to be unitary. The BTZ black hole, however, induces a Liouville
theory at spatial infinity[108, 109]. This means that the effective central charge

is equal to one[114] instead of c = 2l/3G
(3)
N , and one does not get correctly

the Bekenstein-Hawking entropy formula (see [113] for further discussion). We
argued that for the case we are discussing we have a unitary CFT because of the
connection to D-branes. We find likely that the CFT corresponding to the BTZ
is unitary only when the latter is embedded in string theory.
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Gravitational waves and massless particle fields

Jan Willem van Holten

NIKHEF, Amsterdam NL

Abstract. These lectures address the planar gravitational wave solutions of general
relativity in empty space-time, and analyze the motion of test particles in the gravita-
tional wave field. Next we consider related solutions of the Einstein equations for the
gravitational field accompanied by long-range wave fields of scalar, spinor and vector
type, corresponding to massless particles of spin s = (0, 1

2 , 1). The motion of test masses
in the combined gravitational and scalar-, spinor- or vector wave fields is discussed.

1 Planar gravitational waves

a. Planar wave solutions of the Einstein equations

Planar gravitational wave solutions of the Einstein equations have been known
since a long time [1]-[3]. In the following I discuss unidirectional solutions of
this type, propagating along a fixed light-cone direction; thus the fields depend
only on one of the light-cone co-ordinates (u, v), here taken transverse to the
x-y-plane:

u = ct− z, v = ct+ z. (1)

Such gravitational waves can be described by space-time metrics

gµνdx
µdxν = − dudv −K(u, x, y)du2 + dx2 + dy2 = − c2dτ2, (2)

or similar solutions with the roles of v and u interchanged. If the space-time is
asymptotically minkowskian. With the metric (2), the connection co-efficients
become

Γ v
uu = K,u, Γ x

uu =
1

2
Γ v
xu =

1

2
K,x, Γ y

uu =
1

2
Γ v
yu =

1

2
K,y. (3)

All other components vanish. The corresponding Riemann tensor has non-zero
components

Ruxux = −1

2
K,xx, Ruyuy = −1

2
K,yy,

Ruxuy = Ruyux = −1

2
K,xy.

(4)

J. Kowalski-Glikman (Ed.): Proceedings 1999, LNP 541, pp. 365−376, 2000.
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The only non-vanishing component of the Ricci tensor then is

Ruu = −1

2
(K,xx +K,yy) ≡ −1

2
∆transK. (5)

Here the label trans refers to the transverse (x, y)-plane, with the z-axis repre-
senting the longitudinal direction. In complex notation

ζ = x+ iy, ζ̄ = x− iy, (6)

the Einstein equations in vacuo become

Rµν = 0 ⇔ K,ζζ̄ = 0. (7)

The general solution of this equation reads

K(u, ζ, ζ̄) = f(u; ζ) + f̄(u; ζ)
∞∑
n=0

∫ ∞

−∞

dk

2π

(
εn(k)e−ikuζn + ε̄n(k)eikuζ̄n

)
. (8)

Note that the terms with n = 0, 1 correspond to vanishing Riemann tensor:
Rµνκλ = 0; therefore they represent flat Minkowski space-time in a non-standard
choice of co-ordinates. For this reason we adopt the convention that ε0 = ε1 = 0,
which is just a choice of gauge.

b. Geodesics of planar-wave space-times

We proceed to solve the geodesic equation in the gravity-wave space-time (2)
along the lines of ref.[5]:

ẍµ = −Γ µ
νλ ẋν ẋλ. (9)

Here the overdot denotes a proper-time derivative. The proper-time Hamiltonian
satisfies a constraint imposed by eq.(2):

H = gµν ẋ
µẋν

= − u̇v̇ − K(u, x, y) u̇2 + ẋ2 + ẏ2 = −c2.
(10)

Because the metric is covariantly constant, the hamiltonian is a constant of
motion:

Ḣ = 0. (11)

This can be checked directly from the geodesic equation (9). Also, as v is a cyclic
co-ordinate, its conjugate momentum is conserved:

ü = 0, (12)

with the simple solution u̇ ≡ γ = constant. Again, this agrees with the geodesic
equation, as there is no non-vanishing connection component in the u-direction:
Γ u
νλ = 0.
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Only the equations of motion in the x-y-plane depend on the specific wave po-
tential K(u, x, y):

ẍ = −1

2
K,x u̇

2 = −γ2

2
K,x,

ÿ = −1

2
K,y u̇

2 = −γ2

2
K,y,

(13)

Eqs. (10)-(13) specify completely the motion of a test particle, with the conserva-
tion of H taking the place of the equation for the acceleration in the v-direction:

γ v̇ + γ2K(u, x, y) = ẋ2 + ẏ2 + c2. (14)

If we now add ż2 to the left- and right-hand side, and remember that

γv̇ = u̇v̇ = c2ṫ2 − ż2, (15)

we can rewrite the hamiltonian conservation law as

c2ṫ2 + γ2K = c2 + ṙ2. (16)

Finally, with v = dr/dt = ṙ/ṫ, the equation can be cast into the form

ṫ =
dt

dτ
=

√
1 − γ2K/c2

1 − v2/c2
(17)

This equation describes relativistic time-dilation as resulting from two effects:
(i) the usual special-relativistic time-dilation from the relative motion of ob-
servers in the rest- and laboratory frame, whose time co-ordinates are τ and t,
respectively;
(ii) the gravitational redshift resulting from the non-trivial potential K.
Now from the conservation of γ = u̇ = cṫ− ż it follows, that

γ = cṫ
(
1 − vz

c

)
, (18)

with vz = dz/dt. Eqs. (17), (18) can then be solved for γ:

γ2

c2
=

1

K +
1 − v2/c2

(1 − vz/c)
2

. (19)

Thus, for a paticle starting at rest at infinity in an asymptotically minkoskian
space-time, we find γ = c. At the same time we observe that

h = K +
1 − v2/c2

(1 − vz/c)
2 (20)
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is conserved. Now we recall that in our conventions K is at least quadratic in
the transverse co-ordinates; hence the components ẍ and ÿ of the transverse
acceleration vanish for x = y = 0. Furthermore K(u, 0, 0) = 0, with the result
that the origin of the transverse plane moves at constant velocity along the
z-axis:

γ2

c2
=

1 − vz/c

1 + vz/c
⇔ vz =

1 − γ2/c2

1 + γ2/c2
. (21)

In particular, the point at rest in the origin moves along the simple geodesic

xµ(τ) = (cτ, 0, 0, 0). (22)

Taking this geodesic as our reference, the solution for the geodesic motion x̄µ(τ)
of any other test particle at the same time presents a measure for the geodesic
deviation between the worldlines of the two particles.

2 Einstein-scalar waves

Having discussed the planar gravitational waves (2) in empty space we now
turn to discuss similar unidirectional wave solutions of the combined system of
Einstein gravity and a set of massless self-interacting scalar fields. The solu-
tions of the inhomogeneous and non-linear Einstein equations, with the energy-
momentum tensor that of the right- (or left-) moving scalar waves, nevertheless
turn out to be a linear superposition of the gravitational field of the scalar waves
and the free gravitational wave solutions discussed in the first paragraph.

We introduce a set of massless scalar fields σi(x), i = 1, ..., N , taking values
in a manifold with the dimensionless metric Gij [σ]. In four-dimensional space-

time the fields themselves have dimension [σ] =
√
E/l; thus, introducing an

appropriate length scale 1/f , in the context of quantum field theory we could
write σi =

√
~c f ηi, with ηi(x) a dimensionless field.

The starting point of our analysis is given by the gravitational and σ-model
field equations

cov σi + Γ i
jk [σ] gµν∂µσ

j∂νσ
k = 0,

Rµν = − 8πG

c4
Gij [σ] ∂µσ

i∂νσ
j .

(23)

Here the covariant d’Alembertian is defined on scalar fields in the standard
fashion

cov =
1√−g ∂µ

√
−ggµν ∂ν ,

whilst Γ k
ij [σ] denotes the Riemann-Christoffel connection in the target manifold

of the scalar fields. These equations can be derived straightforwardly from the
combined Einstein-σ-model action, but we will skip the details of that procedure
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here. Our aim is to construct simultaneous traveling wave solutions of the full
set of equations (23). Such solutions are actually quite easy to find. First, the
scalar field equation is solved by taking right-moving fields

σi = σi(u), (24)

with no dependence on any other co-ordinate. Next we substitute this solution
of the scalar field into the second equation for the corresponding gravitational
field. As before, only the uu-component of this equation survives, reading

Ruu = − 1

2
∆transK = − 8πG

c4
Gij [σ] ∂uσ

i∂uσ
j . (25)

As this is a linear equation, the general solution consists of a linear superposition
of a particular solution and the general free gravitational wave of the previous
section:

K(u, ζ, ζ̄) =
8πG

c4
Gij [σ] ∂uσ

i∂uσ
j ζ̄ζ + f(u, ζ) + f̄(u, ζ̄). (26)

Now any specific solution σi(u) is a map from the real line into the target
manifold of the scalar fields. Consider the special case that this curve in the
target manifold is a geodesic:

d2σi

du2
+ Γ i

jk

dσj

du

dσk

du
= 0. (27)

Then the quantity

I = Gij [σ]
dσi

du

dσj

du
, (28)

generating translations in u, is constant along this curve: dI/du = 0. Moreover,
for Euclidean manifolds with non-degenerate metric it is positive definite: I > 0.
Observe, that for manifolds with compact directions (like spheres) the geodesics
may be closed; then the corresponding scalar field configurations are periodi.

The special solution for the accompanying gravitational field now becomes

Kscalar(u, x, y) =
4πGI

c4
(x2 + y2), (29)

to which an arbitrary free gravitational wave solution can be added. In this
special case, upon inserting Kscalar into eqs.(13) the transversal equations of
motion of a test mass take the particularly simple form:

ẍ = − 4πGIγ2

c4
x, ÿ = − 4πGIγ2

c4
y. (30)

Thus the test mass executes a simple harmonic motion in the transverse plane,
with frequency

ω =
γ

c2

√
4πGI. (31)

The solutions for the coupled Einstein-scalar field equations discussed here are
not the only ones of interest. For example, the gravitational waves accompa-
nying expanding domain walls in a theory with a spontaneously broken global
symmetry can be calculated and have been discussed e.g. in [4, 5].
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3 Einstein-Dirac waves

In this section we construct wave-solutions for massless chiral fermions coupled
to Einstein gravity. As before the waves are unidirectional, and both left- and
righthanded fermion solutions, associated with helicity ±1 quantum states, exist.

To treat fermions in interaction with gravity, it is necessary to introduce
the vierbein and spin connection into the formalism. With the local minkowski
metric η = diag(+1,+1,+1,-1), the vierbein is a local lorentz vector of 1-forms
Ea(x) = dxµe a

µ (x) satisfying the symmetric product rule

ηabE
aEb = ηab e

a
µ e

b
ν dx

µdxν = gµνdx
µdxν . (32)

In a convenient local lorentz gauge, the vierbein corresponding to the metric (2)
takes the form

Ea =

(
dx, dy,

1

2
((K − 1) du+ dv),

1

2
((K + 1) du+ dv)

)
. (33)

The inverse vierbein is defined by the differential operator ∇a = eµ
a ∂µ such that

Ea∇a = dxµ∂µ (34)

In components it reads

∇a = (∂x, ∂y,−∂u + (K + 1) ∂v, ∂u − (K − 1) ∂v) . (35)

Next we compute the components of the spin connection ωa
b = dxµω a

µ b from
the identity

dEa = ωa
b ∧ Eb. (36)

With the vierbein (33) the spin connection has only one component

ω ab
u = −ω ba

u =
1

2




0 0 K,x K,x

0 0 K,y K,y

−K,x −K,y 0 0
−K,x −K,y 0 0


 . (37)

In order to construct the dirac operator we introduce a basis for the dirac matri-
ces satisfying

{
γa, γb

}
= 2ηab, and define a set spinor generators for the lorentz

algebra by σab = 1
4 [γa, γb]. Then the dirac operator is

γ ·D = γa
(
∇a −

1

2
ω bc
a σbc

)
, (38)

The results we need all depend on the property of the light-cone components of
the dirac algebra:

γu = γae u
a = −γ3 + γ0. (39)
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This element of the dirac algebra is nilpotent:

(γu)2 = 0. (40)

The same is true for γv = e a
v γa = 1

2γ
u. Because of the form of the spin con-

nection (37), the dirac-algebra valued form ωabσab is itself proportional to γu;
its nilpotency then guarantees that the spin-connection term in the covariant
derivative (38) vanishes by itself:

γaω bc
a σbc = γuω bc

u σbc = 0. (41)

Hence the only vestige of curved space-time left in the dirac operator is the
inverse vierbein in the contraction of dirac matrices and differential operators:

γ ·D = γa∇a = γµ∂µ

= i




∂u − (K − 1) ∂v −σ1∂x − σ2∂y
−σ3 (−∂u + (K + 1) ∂v)

σ1∂x + σ2∂y −∂u + (K − 1) ∂v
+σ3 (−∂u + (K + 1) ∂v)


 .

(42)

Here we have introduced the following basis for the dirac algebra:

γk =

(
0 −iσk
iσk 0

)
, k = 1, 2, 3; γ0 =

(
i1 0
0 −i1

)
, (43)

with the σk the standard pauli matrices. The zero modes of this operator with the
property that the energy-momentum tensor only has a non-zero Tuu component
are flat spinor fields ψ(u) with the property

ψ(u) = i γu
(
χ(u)

0

)
=

(
1 −σ3

−σ3 1

) (
χ(u)

0

)
=

(
χ(u)

−σ3χ(u)

)
, (44)

where χ(u) is a 2-component (pauli) spinor. Indeed, first of all spinors of this
type are zero-modes of the dirac operator:

γ ·Dψ = 0. (45)

This follows by direct application of the expression (42) to the spinor (44),
using the nilpotency of γu. Moreover, with this property it also follows that the
energy-momentum tensor takes the form

Tµν =
1

8
ψ (γµDν + γνDµ) ψ =

1

4
δuµδ

u
ν ψ γu ∂u ψ. (46)

To see this, first note that the u-component of the covariant derivative Dµ is the
only one that does not vanish on ψ(u) in general. We then only have to check
that in all remaining cases with γµ 	= γu the spinor ψ(u) (44) gets multiplied by
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a dirac matrix which can be factorized such as to have a right multiplicator of
the form γu. Again, as (γu)2 = 0, Tµν necessarily is of the required form (46).

Finally we remark, that the upper- and lower component of the pauli spinor
χ(u) in our conventions correspond to a negative and positive helicity state,
respectively. Thus we find as solutions of the dirac operator in the metric (2)
two massless spinor states, corresponding to right-moving zero-modes of the
dirac operator with helicity ±1, respectively.

This solution is self-consistent as the only non-zero component of the energy-
momentum tensor is

Tuu(u) = −1

2

[
χ†χ′] (u), (47)

where the prime denotes a derivative w.r.t. u, and the dagger on χ indicates
hermitean conjugation of the 2-component spinor. It is then straightforward
to solve the Einstein equation for K in the presence of the energy momentum
distribution of the spinor field:

Kspinor(u, x, y) = − 2πG

c4
[
χ†χ′] (u)

(
x2 + y2

)
. (48)

Again, to this particular solution an abitrary free gravitatonal wave can be
added. It should be mentioned here, that consistency requires the spinors in
the energy momentum tensor (46), (47) to be anti-commuting objects, i.e. if the
spinor fields χ(u) are expanded in a fourier series of massless matter waves, the
co-efficients take values in an infinite-dimensional Grassmann algebra. Thus the
expression can be given an operational meaning only in the context of quantum
theory, by performing some averaging procedure. For example, if the spinors
form a condensate such that the kinetic energy Σ ≡ −〈

[
χ†χ′]〉 = constant > 0,

then such a condensate would generate gravitational waves in which test-masses
perform harmonic motion of the type (30), (31) with frequency

ω =
γ

c2

√
2πGΣ. (49)

4 Einstein-Maxwell waves

As the last example we consider coupled Einstein-Maxwell fields. We look for
solutions of wave-type, using the metric (2). In the absence of masses and charges,
the field equations are:

Rµν = − 8πε0G

c2

(
FµλF

λ
ν − 1

4
gµνF

2

)
, DλF

λµ = 0. (50)

With the same metric (2), we also find the same expressions for the components
of the connection (3), and the Riemann and Ricci curvature tensors (4), (5).
Therefore the left-hand side of the Einstein eqn. (50) is fixed in terms of the
potential K(u, y, z).
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As concerns the Maxwell equations, the covariant derivative

DλF
λµ = ∂λF

λµ + Γ λ
λν F νµ + Γ µ

λν Fλν (51)

reduces to the first term on the r.h.s., an ordinary four-divergence; this happens
because in the last term the even connection is contracted with the odd field-
strength tensor, whilst the middle term contains a trace over an upper and a
lower index of the connection, which vanishes in our case.

Thus the Maxwell equation reduces to the same expression as in minkowski
space-time, and it has the same wave solutions. We consider an elementary wave
solution, which in terms of the co-ordinate system (2) is described by the vector
potential

Aµ = (a sin k(ct− z), 0, 0), (52)

with the light-cone components vanishing, and with a a constant transverse
vector: az = 0. Of course, arbitrary solution can be constructed from the ele-
mentary waves (52) by linear superposition. With u = ct − z and ω = kc the
angular frequency of the wave, the electric and magnetic fields are

Ek(u) = ωa cos ku, Bk(u) = k × a cos ku. (53)

As usual for e.m. waves, |Ek(0)| = c|Bk(0)|, and Ek · Bk = 0. Indeed, the only
non-zero components of the full field strength are

Fui = −Fiu = kai cos ku, i = (x, y), (54)

all others vanishing. It is now straightforward to compute the stress-energy tensor
components of the electro-magnetic field, with the result

Tuu = ε0c
2k2a2 cos2 ku, (55)

and all other components zero. The Einstein-Maxwell equations then reduce to

∆transK =
16πε0G

c2
k2a2 cos2 ku. (56)

This has the special solution

Kem =
4πε0G

c2
k2a2 cos2 ku

(
x2 + y2

)
=

4πε0G

c4
E2

k(u) ζζ. (57)

In view of the linearity of eq.(56), the general solution is a superposition of such
special solutions and arbitrary free gravitational waves of the type (8):

K(u, ζ, ζ) = Kem(u, ζ, ζ) + f(u, ζ) + f̄(u, ζ). (58)
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Next we turn to the motion of a test particle with mass m and charge q in the
background of these gravitational and electro-magnetic fields. These equations
are modified to take into account the Lorentz force on the test charge:

ẍµ + Γ µ
νλ ẋν ẋλ =

q

m
Fµ

ν ẋ
ν . (59)

With the only non-zero covariant components of Fµν given by eq.(54), there
are no contravariant components in the lightcone direction u. As a result the
equation for u is not modified, and we again find

u̇ = γ = const. (60)

This also follows, because the electro-magnetic forces do not change the proper-
time hamiltonian:

H = gµν ẋ
µẋν

= = − u̇v̇ − K(u, y, z) u̇2 + ẏ2 + ż2 = −c2,
(61)

except that K(u, x, y) now is given by the modified expression (58). Therefore
v is still a cyclic co-ordinate and equation (14) for v̇ again follows from the
conservation of H :

γ v̇ + γ2K(u, x, y) = ẋ2 + ẏ2 + c2. (62)

As a result we find in this case the same formal expressions for the solution of
the equations of motion in the time-like and longitudinal directions:

ṫ =
dt

dτ
=

√
1 − γ2K/c2

1− v2/c2
, (63)

whilst

h = K +
1 − v2/c2

(1 − vz/c)
2 (64)

is again a constant of motion. In both cases of course K now is the full solution
(58).

Manifest changes in the equations of motion are obtained in the transverse
directions:

ξ̈ = −γ2

2
∇ξK − qγ

m
ka cos ku, (65)

where ξ = (x, y) is a transverse vector and ∇ξ is the gradient in the transverse
plane. If we take for K the special solution (57), we find the conservation law

4πε0G

c2
k2a2ξ2 cos2 ku +

1 − v2/c2

(1 − vz/c)
2 = h = const. (66)
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Inserting the explicit form of u(τ) = γτ , eqs.(65) then take the form

ξ̈ = − 4πε0G

c2
γ2k2a2 cos2(γkτ) ξ − qγ

m
ka cos(γkτ). (67)

Equivalently, we can use u instead of τ as the independent variable:

d2ξ

du2
= − 4πε0G

c2
k2a2 cos2(ku) ξ − q

mγ
ka cos ku. (68)

Clearly, it is useful to decompose ξ into components parallel and orthogonal to
the electric field Ek, which in our choice of electro-magnetic gauge is the same
as that of the vector potential a:

ξ = ξ‖ + ξ⊥, (69)

with

ξ‖ =
ξ · a
|a|2 a, ξ⊥ =

ξ × a

|a| . (70)

It follows that

d2ξ‖
du2

= − 4πε0G

c2
k2a2 cos2(ku) ξ‖ − q

mγ
ka cos ku,

d2ξ⊥
du2

= − 4πε0G

c2
k2a2 cos2(ku) ξ⊥.

(71)

Transforming to the cosine of the double argument, the last equation can be
seen to reduce to the standard Mathieu equation:

d2ξ⊥
du2

+
2πε0G

c2
k2a2 (1 + cos 2ku) ξ⊥ = 0, (72)

whilst the other equation becomes an inhomogeneous Mathieu equation, with
the Lorentz force representing the inhomogeneous term:

d2ξ‖
du2

+
2πε0G

c2
k2a2 (1 + cos 2ku) ξ‖ = − q

mγ
ka cos ku. (73)

Obviously, one may try to find a particular solution to this equation by making
an expansion in powers of cosku. The general solution is a superposition of this
special one plus the general solution of the Mathieu equation (72).

A special case is that of static crossed electric and magnetic fields, obtained
in the limit k → 0. Then the eqs.(72) and (73) reduce to ordinary homogeneous
and inhomogeneous harmonic equations:

d2ξ⊥
du2

+
4πε0G

c4
E2

0 ξ⊥ = 0,

d2ξ‖
du2

+
4πε0G

c4
E2

0 ξ‖ = − q

mcγ
E0.

(74)
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The angular frequency of this harmonic motion is

ω =

√
4πε0G

c2
E0 = 0.29× 10−18E0 (V/m). (75)

Clearly, the Lorentz force due to the constant electric field produces a constant
proper-time acceleration of the test charge, but the harmonic gravitational com-
ponent of the motion is very slow for practically realistic electric fields: periods
of a year or less require a field strength of the order of 1010 V/m or more.

This work is part of the research program of the Foundation for Fundamental Research
of Matter (FOM)
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